Suppr超能文献

缺水、输尿管压力升高以及用等渗盐水进行急性容量扩张时的有效肾小球滤过压和单个肾单位滤过率。

Effective glomerular filtration pressure and single nephron filtration rate during hydropenia, elevated ureteral pressure, and acute volume expansion with isotonic saline.

作者信息

Andreucci V E, Herrera-Acosta J, Rector F C, Seldin D W

出版信息

J Clin Invest. 1971 Oct;50(10):2230-4. doi: 10.1172/JCI106719.

Abstract

Free-flow and stop-flow intratubular pressures were measured in rats with an improved Gertz technique using Landis micropipets or a Kulite microtransducer. In hydropenia, average single nephron glomerular filtration rate was 29.3 nl/min, glomerular hydrostatic pressure (stop-flow pressure + plasma colloid osmotic pressure) was 70 cm H(2)O and mean glomerular effective filtration pressure was 12.7-14.3 cm H(2)O, approaching zero at the efferent end of the glomerulus. Thus, the glomerulus is extremely permeable, having a filtration coefficient four to five times greater than previously estimated. Mean effective filtration pressure and single nephron glomerular filtartion rate fell with elevated ureteral pressure and rose with volume expansion, more or less proportionately. Changes in effective filtration pressure were due primarily to increased intratubular pressure in ureteral obstruction and to reduced plasma colloid osmotic pressure in volume expansion; glomerular hydrostatic pressure remained constant in both conditions and thus played no role in regulation of filtration rate.

摘要

采用改良的格茨技术,使用兰迪斯微量移液器或库利特微型换能器,测量大鼠肾小管内的自由流动压力和停流压力。在缺水状态下,平均单肾单位肾小球滤过率为29.3 nl/分钟,肾小球静水压力(停流压力 + 血浆胶体渗透压)为70 cm H₂O,平均肾小球有效滤过压为12.7 - 14.3 cm H₂O,在肾小球出球端接近零。因此,肾小球具有极高的通透性,其滤过系数比先前估计的大四到五倍。平均有效滤过压和单肾单位肾小球滤过率随输尿管压力升高而下降,随容量扩张而上升,大致成比例。有效滤过压的变化主要是由于输尿管梗阻时肾小管内压力升高以及容量扩张时血浆胶体渗透压降低;在这两种情况下,肾小球静水压力保持恒定,因此在滤过率调节中不起作用。

相似文献

3
Dynamics of glomerular ultrafiltration in the rat. V. Response to ischemic injury.
J Clin Invest. 1974 Jan;53(1):105-16. doi: 10.1172/JCI107527.
4
Proximal tubular function in dogs with thoracic caval constriction.
J Clin Invest. 1971 Oct;50(10):2150-8. doi: 10.1172/JCI106709.
8
Determinants of glomerular ultrafiltration in cats.
Am J Vet Res. 1993 Jun;54(6):970-5.
9
Hydraulic permeability of the peritubular and glomerular capillary membranes in the rat kidney.
Acta Physiol Scand. 1983 Feb;117(2):251-61. doi: 10.1111/j.1748-1716.1983.tb07204.x.

引用本文的文献

1
Glomerulus-on-a-Chip: Current Insights and Future Potential Towards Recapitulating Selectively Permeable Filtration Systems.
Int J Nephrol Renovasc Dis. 2022 Mar 10;15:85-101. doi: 10.2147/IJNRD.S344725. eCollection 2022.
2
3
Donald Wayne Seldin, MD: a conversation with the editor. Interview by William Clifford Roberts.
Proc (Bayl Univ Med Cent). 2003 Apr;16(2):193-220. doi: 10.1080/08998280.2003.11927905.
5
Nephron stop-flow pressure response to obstruction for 24 hours in the rat kidney.
J Clin Invest. 1974 May;53(5):1497-500. doi: 10.1172/JCI107699.
9
Reliability of radioactive inulin as a marker of glomerular filtration rate in the rat.
Pflugers Arch. 1974;350(4):347-58. doi: 10.1007/BF00592643.

本文引用的文献

1
[Permeability of glomerulomembranes in the kidney].
Klin Wochenschr. 1955 Apr 15;33(15-16):362-5. doi: 10.1007/BF01467967.
2
RENAL HEMODYNAMICS.
Am J Med. 1964 May;36:698-719. doi: 10.1016/0002-9343(64)90181-0.
3
The problem of the volume component of body fluid homeostasis.
Am J Med Sci. 1956 Jul;232(1):93-104. doi: 10.1097/00000441-195607000-00014.
7
Peritubular control of proximal tubular fluid reabsorption in the rat kidney.
Am J Physiol. 1968 May;214(5):943-54. doi: 10.1152/ajplegacy.1968.214.5.943.
9
Influence of postglomerular hematocrit and protein concentration on rat nephron fluid transfer.
Am J Physiol. 1971 Jan;220(1):148-61. doi: 10.1152/ajplegacy.1971.220.1.148.
10
Role of physical factors in the natriuresis induced by acetylcholine.
Am J Physiol. 1970 Mar;218(3):880-5. doi: 10.1152/ajplegacy.1970.218.3.880.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验