Suppr超能文献

大肠杆菌中β-葡萄糖苷利用的诱导系统。I.β-葡萄糖苷的主动转运与利用

Inducible system for the utilization of beta-glucosides in Escherichia coli. I. Active transport and utilization of beta-glucosides.

作者信息

Schaefler S

出版信息

J Bacteriol. 1967 Jan;93(1):254-63. doi: 10.1128/jb.93.1.254-263.1967.

Abstract

Wild-type Escherichia coli strains (beta-gl(-)) do not split beta-glucosides, but inducible mutants (beta-gl(+)) can be isolated which do so. This inducible system consists of a beta-glucoside permease and an aryl beta-glucoside splitting enzyme. Both can be induced by aryl and alkyl beta-glucosides. In beta-gl(-) and noninduced beta-gl(+) cells, C(14)-labeled thioethyl beta-glucoside (TEG) is taken up by a constitutive permease, apparently identical with a glucose permease (GP). This permease has a high affinity for alpha-methyl glucoside and a low affinity for aryl beta-glucosides. No accumulation of TEG occurs in a beta-gl(-) strain lacking glucose permease (GP(-)). In induced beta-gl(+) strains, there appears a second beta-glucoside permease with low affinity for alpha-methyl glucoside and high affinity for aryl beta-glucosides. Autoradiography shows that TEG is accumulated by the beta-glucoside permease and glucose permease in two different forms (one being identical with TEG, the other probably phosphorylated TEG). In GP(+) beta-gl(+) strains with high GP activity, alkyl beta-glucosides induce the enzyme and the beta-glucoside permease after a prolonged induction lag, and they competitively inhibit the induction by aryl beta-glucosides. The induction lag and competition do not exist in GP(-) beta-gl(+) strains. It is assumed that phosphorylated alkyl and thioalkyl beta-glucosides inhibit the induction, and that this inhibition is responsible for the induction lag.

摘要

野生型大肠杆菌菌株(β-gl(-))不能分解β-葡萄糖苷,但可以分离出可诱导的突变体(β-gl(+)),它们能够分解β-葡萄糖苷。这种可诱导系统由β-葡萄糖苷通透酶和芳基β-葡萄糖苷分解酶组成。两者都可被芳基和烷基β-葡萄糖苷诱导。在β-gl(-)和未诱导的β-gl(+)细胞中,C(14)标记的硫代乙基β-葡萄糖苷(TEG)由组成型通透酶摄取,该通透酶显然与葡萄糖通透酶(GP)相同。这种通透酶对α-甲基葡萄糖苷具有高亲和力,对芳基β-葡萄糖苷具有低亲和力。在缺乏葡萄糖通透酶(GP(-))的β-gl(-)菌株中,TEG不会积累。在诱导的β-gl(+)菌株中,出现了第二种β-葡萄糖苷通透酶,它对α-甲基葡萄糖苷具有低亲和力,对芳基β-葡萄糖苷具有高亲和力。放射自显影显示,TEG以两种不同形式被β-葡萄糖苷通透酶和葡萄糖通透酶积累(一种与TEG相同,另一种可能是磷酸化的TEG)。在具有高GP活性的GP(+)β-gl(+)菌株中,烷基β-葡萄糖苷在长时间的诱导延迟后诱导该酶和β-葡萄糖苷通透酶,并且它们竞争性抑制芳基β-葡萄糖苷的诱导。在GP(-)β-gl(+)菌株中不存在诱导延迟和竞争现象。据推测,磷酸化的烷基和硫代烷基β-葡萄糖苷抑制诱导,并且这种抑制是诱导延迟的原因。

相似文献

引用本文的文献

4
Spatial and temporal organization of the E. coli PTS components.大肠杆菌 PTS 成分的时空组织。
EMBO J. 2010 Nov 3;29(21):3630-45. doi: 10.1038/emboj.2010.240. Epub 2010 Oct 5.

本文引用的文献

7
UPTAKE OF AMINO ACIDS BY SALMONELLA TYPHIMURIUM.鼠伤寒沙门氏菌对氨基酸的摄取
Arch Biochem Biophys. 1964 Jan;104:1-18. doi: 10.1016/s0003-9861(64)80028-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验