Schaefler S, Maas W K
J Bacteriol. 1967 Jan;93(1):264-72. doi: 10.1128/jb.93.1.264-272.1967.
Two types of mutants obtained by treating beta-gl(+) cells with nitrosoguanidine are described. One type, beta-gl(+)c, is constitutive for the biosynthesis of the aryl beta-glucoside splitting enzyme(s) and for the beta-glucoside permease; the other (beta-gl(+)sal(-)) has lost the capacity to ferment salicin, but has retained the capacity to ferment arbutin and other aryl beta-glucosides. By two successive mutational steps, beta-gl(+)sal(-)c double mutants can be obtained. Determinations of the enzymatic splitting of salicin and p-nitrophenyl beta-glucoside by beta-gl(+)sal(-) cells and extracts showed that these mutants have lost the capacity to split salicin but do split p-nitrophenyl beta-glucoside; they possess the beta-glucoside permease, and in them salicin is a gratuitous inducer for enzyme and permease biosynthesis. Studies on a beta-gl(+) strain, which splits salicin as well as p-nitrophenyl beta-glucoside, have shown that the splitting of salicin is more temperature-sensitive than that of p-nitrophenyl beta-glucoside and other beta-glucosides. Other properties of the two activities are similar. Interrupted mating experiments and cotransduction with P1kc phage showed that the genetic determinants of the beta-glucoside system map between the pyrE and ile loci. Three distinct mutational sites were found and are presumed to have the following functions: beta-glA, a structural gene for an aryl beta-glucoside splitting enzyme; beta-glB, either the structural gene for the beta-glucoside-permease or a regulatory gene; and beta-glC, a regulatory gene (or site). Escherichia coli wild-type strains are of the genotype A(+) B(-) C(+). The beta-gl(+) mutation determining the ability to ferment beta-glucosides is considered to be a permease or regulatory mutation, and the resulting genotype is A(+) B(+) C(+). The beta-gl(+)sal(-) phenotype results from a mutation in the beta-glA gene (genotype A' B(+) C(+)), and the constitutive phenotype results from a mutation in the beta-glC gene, the genotypes A(+) B(+)C(a) and A' B(+)C(a) corresponding to the phenotypes beta-gl(+)c and beta-gl(+)sal(-)c.
本文描述了通过用亚硝基胍处理β-gl(+)细胞获得的两种突变体类型。一种类型为β-gl(+)c,其芳基β-葡萄糖苷裂解酶的生物合成以及β-葡萄糖苷通透酶是组成型的;另一种(β-gl(+)sal(-))丧失了发酵水杨苷的能力,但保留了发酵熊果苷和其他芳基β-葡萄糖苷的能力。通过两个连续的突变步骤,可以获得β-gl(+)sal(-)c双突变体。对β-gl(+)sal(-)细胞及其提取物中水杨苷和对硝基苯基β-葡萄糖苷的酶促裂解测定表明,这些突变体丧失了裂解水杨苷的能力,但能裂解对硝基苯基β-葡萄糖苷;它们具有β-葡萄糖苷通透酶,在这些突变体中,水杨苷是酶和通透酶生物合成的 gratuitous 诱导剂。对一种既能裂解水杨苷又能裂解对硝基苯基β-葡萄糖苷的β-gl(+)菌株的研究表明,水杨苷的裂解比对硝基苯基β-葡萄糖苷和其他β-葡萄糖苷的裂解对温度更敏感。这两种活性的其他特性相似。中断杂交实验以及与P1kc噬菌体的共转导表明,β-葡萄糖苷系统的遗传决定簇位于pyrE和ile基因座之间。发现了三个不同的突变位点,并推测它们具有以下功能:β-glA,芳基β-葡萄糖苷裂解酶的结构基因;β-glB,要么是β-葡萄糖苷通透酶的结构基因,要么是一个调节基因;以及β-glC,一个调节基因(或位点)。大肠杆菌野生型菌株的基因型为A(+) B(-) C(+)。决定发酵β-葡萄糖苷能力的β-gl(+)突变被认为是通透酶或调节突变,产生的基因型为A(+) B(+) C(+)。β-gl(+)sal(-)表型是由β-glA基因中的突变引起的(基因型为A' B(+) C(+)),组成型表型是由β-glC基因中的突变引起的,基因型A(+) B(+)C(a)和A' B(+)C(a)分别对应于β-gl(+)c和β-gl(+)sal(-)c表型。 (注:“gratuitous”这里可能需要结合专业知识准确理解其在文中的含义,直译为“无偿的、无效果的”等不太能准确表达其在该语境下的意思,可能是指某种特殊的诱导相关概念,具体需根据专业背景确定,这里保留英文供进一步参考)