Naudu P R, Miles P L
Biochem J. 1969 Oct;115(1):29-35. doi: 10.1042/bj1150029.
Duodenal alkaline phosphatase of juvenile (11-day-old) mice, like other non-specific alkaline phosphatases, has the ability to hydrolyse PP(i). When a constant Mg(2+)/PP(i) concentration ratio is maintained, plots of velocity as a function of PP(i) concentration are consistent with Michaelis-Menten kinetics. Mg(2+) activates pyrophosphate hydrolysis and maximal activity is obtained at a constant Mg(2+)/PP(i) concentration ratio of 0.66. At higher ratios there is strong inhibition. At constant concentrations of Mg(2+) and increasing concentrations of PP(i), the velocity-substrate (PP(i)) concentration plots show sigmoidal dependence. By assuming that the true substrate is MgP(2)O(7) (2-) complex, and using complexity constants, the concentrations of free Mg(2+), Mg(2)P(2)O(7) and MgP(2)O(7) (2-) were calculated in assay mixtures ranging in PP(i) concentration from 0.1 to 2.5mm and in total Mg(2+) concentration from 0.6 to 2.6mm. From these data, the concentrations of added Mg(2+) and PP(i) in the assay mixtures were selected so that the velocity could be measured (1) at three fixed concentrations of free Mg(2+) ions with varied concentrations of MgP(2)O(7) (2-) and (2) at four fixed concentrations of Mg(2)P(2)O(7) with varied concentrations of MgP(2)O(7) (2-). Lineweaver-Burk and Hill plots from these data showed that the inhibition is caused by free Mg(2+) ions, of a mixed type and consistent with Michaelis-Menten kinetics. The sigmoidal dependence observed between velocity and PP(i) concentration at constant concentration of total Mg(2+) is therefore not due to allosteric inhibition. It is due to a combined effect of (1) inhibition by free Mg(2+) ions, (2) depletion of the true substrate, MgP(2)O(7) (2-), owing to the formation of Mg(2)P(2)O(7) and (3) the manner in which the concentrations of these three molecular or ionic species change when PP(i) concentration is increased maintaining the total Mg(2+) concentration constant.
幼年(11日龄)小鼠的十二指肠碱性磷酸酶与其他非特异性碱性磷酸酶一样,具有水解焦磷酸(PP(i))的能力。当维持恒定的镁离子(Mg(2+))/焦磷酸浓度比时,以焦磷酸浓度为函数的速度图符合米氏动力学。镁离子激活焦磷酸水解,在镁离子/焦磷酸浓度比为0.66时可获得最大活性。在更高的比例下会有强烈抑制作用。在镁离子浓度恒定且焦磷酸浓度增加时,速度-底物(焦磷酸)浓度图呈现出S形依赖性。通过假设真正的底物是MgP(2)O(7) (2-)复合物,并使用络合常数,计算了在焦磷酸浓度范围为0.1至2.5mmol/L以及总镁离子浓度范围为0.6至2.6mmol/L的测定混合物中游离镁离子、Mg(2)P(2)O(7)和MgP(2)O(7) (2-)的浓度。根据这些数据,选择测定混合物中添加的镁离子和焦磷酸的浓度,以便能够(1)在游离镁离子的三个固定浓度下,随着MgP(2)O(7) (2-)浓度的变化来测量速度,以及(2)在Mg(2)P(2)O(7)的四个固定浓度下,随着MgP(2)O(7) (2-)浓度的变化来测量速度。这些数据的Lineweaver-Burk图和希尔图表明,抑制作用是由游离镁离子引起的,属于混合型抑制,且符合米氏动力学。因此,在总镁离子浓度恒定的情况下,观察到的速度与焦磷酸浓度之间的S形依赖性并非由于别构抑制。它是由于以下综合作用导致的:(1)游离镁离子的抑制作用;(2)由于形成Mg(2)P(2)O(7)导致真正底物MgP(2)O(7) (2-)的消耗;(3)当焦磷酸浓度增加而总镁离子浓度保持恒定时,这三种分子或离子物种的浓度变化方式。