Suppr超能文献

构巢曲霉中己糖转运过程中不需要磷酸化的证据。

Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans.

作者信息

Brown C E, Romano A H

出版信息

J Bacteriol. 1969 Dec;100(3):1198-203. doi: 10.1128/jb.100.3.1198-1203.1969.

Abstract

The transport of 2-deoxy-d-glucose, a nonmetabolizable glucose analogue, into Aspergillus nidulans against a concentration gradient does not appear to require phosphorylation, despite the high levels of sugar phosphates accumulated rapidly within the cell. Two other deoxy analogues of d-glucose, 6-deoxy-d-glucose and 1,5-anhydro-d-glucitol (1-deoxy-d-glucose), although they lack the C-6 and the C-1 hydroxyl groups, respectively, and thus cannot be phosphorylated in those positions, still competitively inhibit the entry of 2-deoxy-d-glucose. Moreover, 6-deoxy-d-glucose can be concentrated against a gradient within the cell without the accumulation of 6-deoxy-d-glucose-phosphate. d-Galactose shows an intracellular ratio of free to phosphorylated sugar similar to that found for 2-deoxy-d-glucose in cells that have galactokinase, but no sugar phosphates are found in a galactokinaseless mutant strain. These data suggest that intracellular kinases are responsible for the sugar phosphate pool; and indeed, a kinase capable of phosphorylating 2-deoxy-d-glucose has been demonstrated. Finally, experiments on the kinetics of labeling of intracellular free sugar and sugar phosphate pools with (14)C-2-deoxy-d-glucose show that radioactivity appears first in the free sugar pool and after a delay enters the sugar phosphate pool.

摘要

2-脱氧-D-葡萄糖是一种不可代谢的葡萄糖类似物,它逆浓度梯度转运进入构巢曲霉的过程似乎并不需要磷酸化,尽管细胞内会迅速积累高水平的糖磷酸盐。另外两种D-葡萄糖的脱氧类似物,6-脱氧-D-葡萄糖和1,5-脱水-D-葡萄糖醇(1-脱氧-D-葡萄糖),尽管它们分别缺少C-6和C-1羟基,因此不能在这些位置被磷酸化,但仍然竞争性抑制2-脱氧-D-葡萄糖的进入。此外,6-脱氧-D-葡萄糖可以逆浓度梯度在细胞内浓缩,而不会积累6-脱氧-D-葡萄糖-磷酸。D-半乳糖在具有半乳糖激酶的细胞中显示出的游离糖与磷酸化糖的细胞内比例,与2-脱氧-D-葡萄糖的情况相似,但在无半乳糖激酶的突变菌株中未发现糖磷酸盐。这些数据表明细胞内激酶负责糖磷酸盐池;事实上,已经证明了一种能够磷酸化2-脱氧-D-葡萄糖的激酶。最后,用(14)C-2-脱氧-D-葡萄糖标记细胞内游离糖和糖磷酸盐池的动力学实验表明,放射性首先出现在游离糖池中,延迟后进入糖磷酸盐池。

相似文献

1
Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans.
J Bacteriol. 1969 Dec;100(3):1198-203. doi: 10.1128/jb.100.3.1198-1203.1969.
2
Transport and phosphorylation of 2-deoxy-D-galactase in renal cortical cells.
Biochim Biophys Acta. 1976 Nov 11;455(1):126-43. doi: 10.1016/0005-2736(76)90158-9.
4
Active renal hexose transport. Structural requirements.
Biochim Biophys Acta. 1980 Aug 4;600(2):513-29. doi: 10.1016/0005-2736(80)90453-8.
5
Uptake and phosphorylation of 2-deoxy-D-glucose by wild-type and single-kinase strains of Saccharomyces cerevisiae.
Biochim Biophys Acta. 1982 Jun 14;688(2):295-304. doi: 10.1016/0005-2736(82)90340-6.
6
Transport of 2-deoxy-D-galactose in Saccharomyces fragilis.
Biochim Biophys Acta. 1976 Aug 16;443(2):243-53. doi: 10.1016/0005-2736(76)90507-1.
7
Sugar transport across the peritubular face of renal cells of the flounder.
J Gen Physiol. 1973 Aug;62(2):169-84. doi: 10.1085/jgp.62.2.169.
9
Asymmetry of glucose transport in the yeast, Kluyveromyces lactis.
Biochim Biophys Acta. 1983 Mar 9;728(3):363-70. doi: 10.1016/0005-2736(83)90507-2.
10
Transport and phosphorylation of D-galactose in renal cortical cells.
Biochim Biophys Acta. 1976 Nov 11;455(1):109-25. doi: 10.1016/0005-2736(76)90157-7.

引用本文的文献

2
Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.
Appl Environ Microbiol. 2013 Nov;79(22):6924-31. doi: 10.1128/AEM.02061-13. Epub 2013 Aug 30.
4
Uptake and Metabolism of d-Glucose by Neocosmospora vasinfecta E. F. Smith.
Plant Physiol. 1976 Aug;58(2):193-8. doi: 10.1104/pp.58.2.193.
6
Regulation of Sugar Transport Systems in Fusarium oxysporum var. lini.
Appl Environ Microbiol. 1990 Aug;56(8):2417-2420. doi: 10.1128/aem.56.8.2417-2420.1990.
8
Caffeine inhibition of aflatoxin synthesis: probable site of action.
Appl Environ Microbiol. 1984 Jun;47(6):1216-20. doi: 10.1128/aem.47.6.1216-1220.1984.
9
Kinetic characteristics of the two glucose transport systems in Neurospora crassa.
J Bacteriol. 1971 May;106(2):479-86. doi: 10.1128/jb.106.2.479-486.1971.
10
Sorbose resistant mutants of Aspergillus nidulans.
Mol Gen Genet. 1971;111(2):185-93. doi: 10.1007/BF00267792.

本文引用的文献

1
2
PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM.
Proc Natl Acad Sci U S A. 1964 Oct;52(4):1067-74. doi: 10.1073/pnas.52.4.1067.
5
On the mechanism of the intestinal absorption of sugars.
Biochim Biophys Acta. 1956 Jun;20(3):568-9. doi: 10.1016/0006-3002(56)90361-4.
6
The genetics of Aspergillus nidulans.
Adv Genet. 1953;5:141-238. doi: 10.1016/s0065-2660(08)60408-3.
7
The mechanism of transmembrane glucose transport in yeast: evidence for phosphorylation, associated with transport.
Arch Biochem Biophys. 1969 Mar;130(1):244-52. doi: 10.1016/0003-9861(69)90030-7.
8
Transport-associated phosphorylation of 2-deoxy-D-glucose in yeast.
Biochim Biophys Acta. 1968 Nov 5;163(3):386-94. doi: 10.1016/0005-2736(68)90123-5.
9
Regulation of sugar utilization by Aspergillus nidulans.
Biochim Biophys Acta. 1968 Jun 24;158(3):491-3. doi: 10.1016/0304-4165(68)90312-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验