Bornhorst W J, Minardi J E
Biophys J. 1970 Feb;10(2):155-71. doi: 10.1016/S0006-3495(70)86291-9.
In part I of this series, the theory of irreversible thermodynamics was applied to the sliding filament model to obtain rate equations for a contracting muscle at the in situ length l(o). In this paper we extend the theory to include length variations derived from the sliding filament model of contracting muscle using the work of Gordon, Huxley, and Julian (1). Accepting the validity of Hill's forcevelocity relation (2) at the in situ length, we show that Hill's equation is valid for any length provided that the values of the parameters, a, b, and V(m) vary with length as derived herein. The predicted variation with length of the velocity for a lightly loaded isotonic contraction is shown to agree well with that measured by Gordon, Huxley, and Julian (1). Chemical rates are derived as functions of length using parameters that can be obtained experimentally.
在本系列文章的第一部分,不可逆热力学理论被应用于肌丝滑动模型,以获得在原位长度l(o)下收缩肌肉的速率方程。在本文中,我们扩展该理论,利用戈登、赫胥黎和朱利安(1)的研究成果,将收缩肌肉的肌丝滑动模型中的长度变化纳入其中。在接受原位长度下希尔力-速度关系(2)有效性的前提下,我们表明,只要参数a、b和V(m)的值如本文所推导的那样随长度变化,希尔方程对于任何长度都是有效的。对于轻度加载的等张收缩,预测的速度随长度的变化与戈登、赫胥黎和朱利安(1)测量的结果吻合良好。利用可通过实验获得的参数,推导出化学速率作为长度的函数。