Suppr超能文献

泄漏积分器神经元模型的输入-输出关系。

Input-output relationship of the Leaky-integrator neuron model.

作者信息

Scharstein H

出版信息

J Math Biol. 1979 Dec;8(4):403-20. doi: 10.1007/BF00275835.

Abstract

This paper presents a method of calculating the spike sequence at the output of the Leaky-Integrator Neuron Model (LIM) in response to an arbitrary input stimulus. The calculations have revealed new properties of the initial transient behavior of the LIM, as well as new constraints upon necessary and sufficient conditions for the appearance of spikes with a fixed phase relation to a periodic input. It is also possible to infer what knowledge about the input stimulus can be obtained from a temporal sequence of spikes at the output of the LIM. In the Discussion, neuronal examples are considered which do not encode the transmitted information as a spike rate, but rather monitor the time of occurence of individual spikes by comparison with a reference signal. This relatively common case is not adequately treated by previous descriptions based on system theory; ways are suggested by which the formalism developed here can be used to describe completely, and understand more fully, the performance of such systems.

摘要

本文提出了一种计算泄漏积分神经元模型(LIM)输出端尖峰序列的方法,该模型用于响应任意输入刺激。计算结果揭示了LIM初始瞬态行为的新特性,以及对与周期性输入具有固定相位关系的尖峰出现的必要和充分条件的新限制。还可以推断出从LIM输出端的尖峰时间序列中可以获得哪些关于输入刺激的信息。在讨论部分,考虑了一些神经元示例,这些神经元不是将传输的信息编码为尖峰率,而是通过与参考信号比较来监测单个尖峰的发生时间。基于系统理论的先前描述未能充分处理这种相对常见的情况;本文提出了一些方法,利用这里发展的形式主义可以完全描述并更全面地理解此类系统的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验