Suppr超能文献

节肢动物的单视觉系统和多视觉系统

Single and multiple visual systems in arthropods.

作者信息

Wald G

出版信息

J Gen Physiol. 1968 Feb;51(2):125-56. doi: 10.1085/jgp.51.2.125.

Abstract

Extraction of two visual pigments from crayfish eyes prompted an electrophysiological examination of the role of visual pigments in the compound eyes of six arthropods. The intact animals were used; in crayfishes isolated eyestalks also. Thresholds were measured in terms of the absolute or relative numbers of photons per flash at various wavelengths needed to evoke a constant amplitude of electroretinogram, usually 50 microv. Two species of crayfish, as well as the green crab, possess blue- and red-sensitive receptors apparently arranged for color discrimination. In the northern crayfish, Orconectes virilis, the spectral sensitivity of the dark-adapted eye is maximal at about 550 mmicro, and on adaptation to bright red or blue lights breaks into two functions with lambda(max) respectively at about 435 and 565 mmicro, apparently emanating from different receptors. The swamp crayfish, Procambarus clarkii, displays a maximum sensitivity when dark-adapted at about 570 mmicro, that breaks on color adaptation into blue- and red-sensitive functions with lambda(max) about 450 and 575 mmicro, again involving different receptors. Similarly the green crab, Carcinides maenas, presents a dark-adapted sensitivity maximal at about 510 mmicro that divides on color adaptation into sensitivity curves maximal near 425 and 565 mmicro. Each of these organisms thus possesses an apparatus adequate for at least two-color vision, resembling that of human green-blinds (deuteranopes). The visual pigments of the red-sensitive systems have been extracted from the crayfish eyes. The horse-shoe crab, Limulus, and the lobster each possesses a single visual system, with lambda(max) respectively at 520 and 525 mmicro. Each of these is invariant with color adaptation. In each case the visual pigment had already been identified in extracts. The spider crab, Libinia emarginata, presents another variation. It possesses two visual systems apparently differentiated, not for color discrimination but for use in dim and bright light, like vertebrate rods and cones. The spectral sensitivity of the dark-adapted eye is maximal at about 490 mmicro and on light adaptation, whether to blue, red, or white light, is displaced toward shorter wavelengths in what is essentially a reverse Purkinje shift. In all these animals dark adaptation appears to involve two phases: a rapid, hyperbolic fall of log threshold associated probably with visual pigment regeneration, followed by a slow, almost linear fall of log threshold that may be associated with pigment migration.

摘要

从小龙虾眼睛中提取出两种视觉色素,这促使人们对视觉色素在六种节肢动物复眼中的作用进行了电生理检查。使用的是完整的动物;对小龙虾也使用了分离的眼柄。阈值是根据在各种波长下每次闪光所需的光子绝对数或相对数来测量的,这些光子数要能诱发恒定幅度的视网膜电图,通常为50微伏。两种小龙虾以及青蟹都拥有对蓝光和红光敏感的受体,显然是用于颜色辨别。在北方小龙虾Orconectes virilis中,暗适应眼睛的光谱敏感度在约550纳米处最大,在适应亮红色或蓝光后会分裂为两个函数,其最大波长(λmax)分别约为435和565纳米,显然来自不同的受体。沼泽小龙虾Procambarus clarkii在暗适应时约570纳米处显示出最大敏感度,在颜色适应时会分裂为对蓝光和红光敏感的函数,其最大波长约为450和575纳米,同样涉及不同的受体。同样,青蟹Carcinides maenas的暗适应敏感度在约510纳米处最大,在颜色适应时会分裂为在425和565纳米附近最大的敏感度曲线。因此,这些生物中的每一种都拥有足以进行至少双色视觉的装置,类似于人类的绿色盲(绿色盲患者)。已经从小龙虾眼睛中提取出了红色敏感系统的视觉色素。鲎和龙虾各自拥有单一的视觉系统,其最大波长分别为520和525纳米。每种情况在颜色适应时都是不变 的。在每种情况下,视觉色素在提取物中都已被鉴定出来。蜘蛛蟹Libinia emarginata呈现出另一种变化。它拥有两个明显不同的视觉系统,不是用于颜色辨别,而是用于在暗光和亮光下使用,类似于脊椎动物的视杆和视锥。暗适应眼睛的光谱敏感度在约490纳米处最大,在光适应时,无论是对蓝光、红光还是白光,都会朝着较短波长移动,这本质上是一种反向浦肯野效应。在所有这些动物中,暗适应似乎涉及两个阶段:对数阈值的快速双曲线下降,可能与视觉色素再生有关,随后是对数阈值的缓慢、几乎呈线性的下降,这可能与色素迁移有关。

相似文献

1
Single and multiple visual systems in arthropods.
J Gen Physiol. 1968 Feb;51(2):125-56. doi: 10.1085/jgp.51.2.125.
2
Spectral sensitivity of the common prawn, Palaemonetes vulgaris.
J Gen Physiol. 1968 May;51(5):694-700. doi: 10.1085/jgp.51.5.694.
4
The spectral sensitivity of crayfish and lobster vision.
J Gen Physiol. 1961 Jul;44(6):1089-102. doi: 10.1085/jgp.44.6.1089.
5
Evidence for a two pigment visual system in the fiddler crab, Uca thayeri.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Jul;188(6):493-9. doi: 10.1007/s00359-002-0325-7. Epub 2002 Jun 20.
6
Detection and resolution of visual stimuli by turtle photoreceptors.
J Physiol. 1973 Oct;234(1):163-98. doi: 10.1113/jphysiol.1973.sp010340.
7
Iodopsin.
J Gen Physiol. 1955 May 20;38(5):623-81. doi: 10.1085/jgp.38.5.623.
8
The simple perfection of quantum correlation in human vision.
Prog Neurobiol. 2006 Jan;78(1):38-60. doi: 10.1016/j.pneurobio.2005.11.006. Epub 2005 Dec 27.

引用本文的文献

1
Motion After-Effects Induced by Dynamic Illumination in Crab Vision.
Ecol Evol. 2025 May 10;15(5):e71426. doi: 10.1002/ece3.71426. eCollection 2025 May.
2
Intrapopulation variability in coloration is associated with reproductive season in the crayfish .
Curr Zool. 2024 Aug 30;71(2):251-262. doi: 10.1093/cz/zoae046. eCollection 2025 Apr.
3
Correlated evolution of conspicuous colouration and burrowing in crayfish.
Proc Biol Sci. 2024 Jul;291(2026):20240632. doi: 10.1098/rspb.2024.0632. Epub 2024 Jul 10.
5
The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria.
Dev Biol. 2022 Dec;492:187-199. doi: 10.1016/j.ydbio.2022.10.011. Epub 2022 Oct 19.
6
Eye spectral sensitivity in fresh- and brackish-water populations of three glacial-relict Mysis species (Crustacea): physiology and genetics of differential tuning.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016 Apr;202(4):297-312. doi: 10.1007/s00359-016-1079-y. Epub 2016 Mar 16.
8
Visual pigment absorbance and spectral sensitivity of the Mysis relicta species group (Crustacea, Mysida) in different light environments.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Dec;191(12):1087-97. doi: 10.1007/s00359-005-0039-8. Epub 2005 Aug 25.
9
Photosensitivity spectrum of crayfish rhodopsin measured using fluorescence of metarhodopsin.
J Gen Physiol. 1982 Feb;79(2):313-32. doi: 10.1085/jgp.79.2.313.
10
The fine structure of the retina of the honey bee drone. An electron microscopical study.
Z Zellforsch Mikrosk Anat. 1970;108(4):530-62. doi: 10.1007/BF00339658.

本文引用的文献

1
The photochemistry of vision.
Doc Ophthalmol. 1949;3:94-137. doi: 10.1007/BF00162600.
2
Spectral Sensitivity of the Scallop Pecten maximus.
Science. 1966 Jan 21;151(3708):345-6. doi: 10.1126/science.151.3708.345.
3
VISUAL PIGMENTS OF SINGLE PRIMATE CONES.
Science. 1964 Mar 13;143(3611):1181-3. doi: 10.1126/science.143.3611.1181.
5
The development of the rhabdom and the appearance of the electrical response in the insect eye.
J Gen Physiol. 1962 Sep;46(1):143-57. doi: 10.1085/jgp.46.1.143.
6
Visual pigment of the horseshoe crab, Limulus polyphemus.
Nature. 1960 Apr 16;186:212-5. doi: 10.1038/186212b0.
7
The spectral sensitivity of crayfish and lobster vision.
J Gen Physiol. 1961 Jul;44(6):1089-102. doi: 10.1085/jgp.44.6.1089.
8
Spectral sensitivity of single visual cells.
Nature. 1961 May 13;190:639. doi: 10.1038/190639a0.
9
Fine structure of some invertebrate photoreceptors.
Ann N Y Acad Sci. 1959 Nov 12;74(2):204-9. doi: 10.1111/j.1749-6632.1958.tb39545.x.
10
Visual pigment of a decapod crustacean: the lobster.
Nature. 1957 Aug 10;180(4580):278-80. doi: 10.1038/180278a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验