Suppr超能文献

乌龟光感受器对视觉刺激的检测与分辨

Detection and resolution of visual stimuli by turtle photoreceptors.

作者信息

Baylor D A, Hodgkin A L

出版信息

J Physiol. 1973 Oct;234(1):163-98. doi: 10.1113/jphysiol.1973.sp010340.

Abstract
  1. Hyperpolarizing responses up to 30 mV in amplitude were recorded from cones and from certain cells believed to be rods in the isolated retina of the swamp turtle, Pseudemys scripta elegans.2. The responses evoked by weak flashes of light reach their maximum in 100-140 msec in red-sensitive cones, 140-180 msec in green-sensitive cones, and 300-600 msec in the rod-like cells (20 degrees C).3. The cone response evoked by weak flashes of light is linearly related to light intensity and obeys the superposition principle in that the response to a very weak step of light is the integral of the response to a very weak flash.4. On the basis of their spectral sensitivities cones can be divided into three distinct classes, namely red-sensitive cones whose relative quantum sensitivity is maximal at 630 nm, green-sensitive cones with a maximal sensitivity at 550 nm and blue-sensitive cones with a maximum at 460 nm.5. The difference between the spectral sensitivity of rods with a maximum at about 520 nm and green-sensitive cones (lambda(max) = 550 nm) is consistent with the view that both receptors contain a 518(2) retinal pigment as reported by Liebman & Granda, but that light is filtered by an orange oil droplet in green-sensitive cones.6. The spectral sensitivities of both red- and green-sensitive cones agree well amongst themselves at long wave-lengths but differ markedly in the extent of the reduction at short wave-lengths. This variation is attributed to differences in the extent to which light is filtered through the coloured oil droplets.7. There is a significant positive correlation between the absolute sensitivity of red- and green-sensitive cones and the reduction in sensitivity at short wave-lengths. This would be explained if a greater fraction of the light passes through the oil droplet in the most sensitive cells.8. The absolute flash sensitivities of the most sensitive receptors were about 250 muV photon(-1) mum(2) in red- and green-sensitive cones, 120 muV photon(-1) mum(2) in blue-sensitive cones, and 1300 muV photon(-1) mum(2) in rods.9. If the effective collecting area (which includes factors for absorption etc.) is taken as 10 mum(2) in a red-sensitive cone the peak hyperpolarization produced by 1 photon would average 25 muV.10. Provided that small spots of light are used, individual receptors obey the ;univariance principle' and the response produced by light of strength I', and wave-length lambda(1) can be matched by a light of strength kI' and wave-length lambda(2), where k is the same for all values of I'.11. A small proportion of cones behave like isolated units in that they have very sharp sensitivity-profiles and obey the univariance principle with respect to the position as well as to the wave-length of light.12. The majority of red and green cones have more diffuse sensitivity-profiles, sometimes with bumps on the descending limb, and behave as though cones with the same spectral sensitivity were electrically coupled to one another.13. The relation between the area of illumination and flash sensitivity agreed approximately with that calculated from the spatial profile.
摘要
  1. 在黄腹彩龟(Pseudemys scripta elegans)离体视网膜的视锥细胞以及某些被认为是视杆细胞的细胞中,记录到了幅度高达30 mV的超极化反应。

  2. 弱闪光诱发的反应在红色敏感视锥细胞中100 - 140毫秒达到最大值,绿色敏感视锥细胞中140 - 180毫秒达到最大值,杆状细胞中300 - 600毫秒达到最大值(20摄氏度)。

  3. 弱闪光诱发的视锥细胞反应与光强度呈线性关系,并遵循叠加原理,即对非常弱的阶跃光的反应是对非常弱的闪光反应的积分。

  4. 根据其光谱敏感性,视锥细胞可分为三个不同类别,即相对量子敏感性在630 nm处最大的红色敏感视锥细胞、在550 nm处具有最大敏感性的绿色敏感视锥细胞以及在460 nm处具有最大值的蓝色敏感视锥细胞。

  5. 最大波长约为520 nm的视杆细胞与绿色敏感视锥细胞(λ(max)=550 nm)的光谱敏感性差异与以下观点一致,即如Liebman和Granda所报道,两种感受器都含有518(2)视网膜色素,但在绿色敏感视锥细胞中,光是通过橙色油滴进行过滤的。

  6. 红色和绿色敏感视锥细胞的光谱敏感性在长波长处彼此吻合良好,但在短波长处的降低程度明显不同。这种变化归因于光通过有色油滴的过滤程度的差异。

  7. 红色和绿色敏感视锥细胞的绝对敏感性与短波长处敏感性的降低之间存在显著的正相关。如果在最敏感的细胞中有更大比例的光通过油滴,这一点就能得到解释。

  8. 最敏感感受器的绝对闪光敏感性在红色和绿色敏感视锥细胞中约为250 μV photon⁻¹ μm²,蓝色敏感视锥细胞中为120 μV photon⁻¹ μm²,视杆细胞中为1300 μV photon⁻¹ μm²。

  9. 如果在红色敏感视锥细胞中有效收集面积(包括吸收等因素)取为10 μm²,那么1个光子产生的峰值超极化平均为25 μV。

  10. 只要使用小光斑,单个感受器遵循“单变量原则”,强度为I'、波长为λ₁的光产生的反应可以由强度为kI'、波长为λ₂的光匹配,其中k对于所有I'值都是相同的。

  11. 一小部分视锥细胞表现得像孤立单元,它们具有非常尖锐的敏感性分布,并在光的位置以及波长方面遵循单变量原则。

  12. 大多数红色和绿色视锥细胞具有更弥散的敏感性分布,有时在下降支上有凸起,并且表现得好像具有相同光谱敏感性的视锥细胞彼此电耦合。

  13. 光照面积与闪光敏感性之间的关系大致与根据空间分布计算出的关系相符。

相似文献

1
Detection and resolution of visual stimuli by turtle photoreceptors.
J Physiol. 1973 Oct;234(1):163-98. doi: 10.1113/jphysiol.1973.sp010340.
2
Light path and photon capture in turtle photoreceptors.
J Physiol. 1975 Jun;248(2):433-64. doi: 10.1113/jphysiol.1975.sp010983.
3
Properties of centre-hyperpolarizing, red-sensitive bipolar cells in the turtle retina.
J Physiol. 1975 Jun;248(2):317-34. doi: 10.1113/jphysiol.1975.sp010976.
4
Functional characteristics of lateral interactions between rods in the retina of the snapping turtle.
J Physiol. 1976 Jul;259(2):251-82. doi: 10.1113/jphysiol.1976.sp011465.
5
Electrical responses of double cones in the turtle retina.
J Physiol. 1974 Nov;242(3):673-83. doi: 10.1113/jphysiol.1974.sp010730.
6
Colour-dependence of cone responses in the turtle retina.
J Physiol. 1973 Oct;234(1):199-216. doi: 10.1113/jphysiol.1973.sp010341.
8
Interactions leading to horizontal cell responses in the turtle retina.
J Physiol. 1974 Jul;240(1):177-98. doi: 10.1113/jphysiol.1974.sp010606.
9
Cones excite rods in the retina of the turtle.
J Physiol. 1975 Apr;246(3):639-51. doi: 10.1113/jphysiol.1975.sp010908.

引用本文的文献

2
Unraveling the functional signals of rods and cones in the human retina: separation and analysis.
Front Ophthalmol (Lausanne). 2024 Apr 8;4:1340692. doi: 10.3389/fopht.2024.1340692. eCollection 2024.
3
Homeostasis at different backgrounds: The roles of overlayed feedback structures in vertebrate photoadaptation.
PLoS One. 2023 Apr 28;18(4):e0281490. doi: 10.1371/journal.pone.0281490. eCollection 2023.
4
The evolutionary history and spectral tuning of vertebrate visual opsins.
Dev Biol. 2023 Jan;493:40-66. doi: 10.1016/j.ydbio.2022.10.014. Epub 2022 Nov 9.
5
Systematic reduction of the dimensionality of natural scenes allows accurate predictions of retinal ganglion cell spike outputs.
Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2121744119. doi: 10.1073/pnas.2121744119. Epub 2022 Nov 7.
7
Temporal vision: measures, mechanisms and meaning.
J Exp Biol. 2021 Jul 15;224(15). doi: 10.1242/jeb.222679. Epub 2021 Jul 30.
8
Functional connexin35 increased in the myopic chicken retina.
Vis Neurosci. 2021 May 14;38:E008. doi: 10.1017/S0952523821000079.
9
High Contrast Allows the Retina to Compute More Than Just Contrast.
Front Cell Neurosci. 2021 Jan 15;14:595193. doi: 10.3389/fncel.2020.595193. eCollection 2020.
10
Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior.
Neuron. 2019 Oct 23;104(2):205-226. doi: 10.1016/j.neuron.2019.07.016.

本文引用的文献

1
Absorption spectra of retinal oil globules in turkey, turtle and pigeon.
Exp Cell Res. 1963 Jan;29:349-55. doi: 10.1016/0014-4827(63)90389-6.
2
S-potentials from colour units in the retina of fish (Cyprinidae).
J Physiol. 1966 Aug;185(3):536-55. doi: 10.1113/jphysiol.1966.sp008001.
3
Spectroscopic properties of porphyropsins.
Vision Res. 1967 May;7(5):349-69. doi: 10.1016/0042-6989(67)90044-2.
4
A nomogram for retinene-2-based visual pigments.
Vision Res. 1967 Mar;7(3):111-20. doi: 10.1016/0042-6989(67)90078-8.
5
Receptive fields of cones in the retina of the turtle.
J Physiol. 1971 Apr;214(2):265-94. doi: 10.1113/jphysiol.1971.sp009432.
7
8
Dark current and photocurrent in retinal rods.
Biophys J. 1970 May;10(5):380-412. doi: 10.1016/S0006-3495(70)86308-1.
9
Kinetics of the photocurrent of retinal rods.
Biophys J. 1972 Aug;12(8):1073-94. doi: 10.1016/S0006-3495(72)86145-9.
10
Electrical activity of vertebrate photoreceptors.
Q Rev Biophys. 1970 May;3(2):179-222. doi: 10.1017/s0033583500004571.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验