Suppr超能文献

神经表面的电荷与电位。二价离子与pH值。

Charges and potentials at the nerve surface. Divalent ions and pH.

作者信息

Hille B

出版信息

J Gen Physiol. 1968 Feb;51(2):221-36. doi: 10.1085/jgp.51.2.221.

Abstract

The voltage dependence of the voltage clamp responses of myelinated nerve fibers depends on the concentration of divalent cations and of hydrogen ions in the bathing medium. In general, increases of the [Ca], [Ni], or [H] increase the depolarization needed to elicit a given response of the nerve. An e-fold increase of the [Ca] produces the following shifts of the voltage dependence of the parameters in the Hodgkin-Huxley model: m(infinity), 8.7 mv; h(infinity), 6.5 mv; tau(n), 0.0 mv. The same increase of the [H], if done below pH 5.5, produces the following shifts: m(infinity), 13.5 mv; h(infinity), 13.5 mv; tau(n), 13.5 mv; and if done above pH 5.5: m(infinity), 1.3 mv; h(infinity), 1.3 mv; tau(n), 4.0 mv. The voltage shifts are proportional to the logarithm of the concentration of the divalent ions and of the hydrogen ion. The observed voltage shifts are interpreted as evidence for negative fixed charges near the sodium and potassium channels. The charged groups are assumed to comprise several types, of varying affinity for divalent and hydrogen ions. The charges near the sodium channels differ from those near the potassium channels. As the pH is lowered below pH 6, the maximum sodium conductance decreases quickly and reversibly in a manner that suggests that the protonation of an acidic group with a pK(a) of 5.2 blocks individual sodium channels.

摘要

有髓神经纤维电压钳反应的电压依赖性取决于浴液中二价阳离子和氢离子的浓度。一般来说,[Ca]、[Ni]或[H]浓度的增加会使引发神经特定反应所需的去极化增加。[Ca]增加一倍会使霍奇金-赫胥黎模型中参数的电压依赖性产生以下偏移:m(∞),8.7 mV;h(∞),6.5 mV;τ(n),0.0 mV。[H]增加相同倍数时,如果在pH 5.5以下进行,会产生以下偏移:m(∞),13.5 mV;h(∞),13.5 mV;τ(n),13.5 mV;如果在pH 5.5以上进行:m(∞),1.3 mV;h(∞),1.3 mV;τ(n),4.0 mV。电压偏移与二价离子和氢离子浓度的对数成正比。观察到的电压偏移被解释为钠通道和钾通道附近存在负固定电荷的证据。假定这些带电基团包括几种类型,对二价离子和氢离子具有不同的亲和力。钠通道附近的电荷与钾通道附近的电荷不同。当pH降至6以下时,最大钠电导以一种表明pK(a)为5.2的酸性基团质子化会阻断单个钠通道的方式快速且可逆地降低。

相似文献

1
Charges and potentials at the nerve surface. Divalent ions and pH.
J Gen Physiol. 1968 Feb;51(2):221-36. doi: 10.1085/jgp.51.2.221.
2
Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH.
Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):301-18. doi: 10.1098/rstb.1975.0011.
4
Ionic blockage of sodium channels in nerve.
J Gen Physiol. 1973 Jun;61(6):687-708. doi: 10.1085/jgp.61.6.687.
6
Pharmacological modifications of the sodium channels of frog nerve.
J Gen Physiol. 1968 Feb;51(2):199-219. doi: 10.1085/jgp.51.2.199.
7
Ultraviolet-induced alterations of the sodium inactivation in myelinated nerve fibres.
J Membr Biol. 1977 Sep 15;36(4):297-310. doi: 10.1007/BF01868156.
8
Conductance fluctuations in Ranvier nodes.
Pflugers Arch. 1975 Oct 16;360(1):17-23. doi: 10.1007/BF00584323.
9
The mode of action of phenobarbital on the excitable membrane of the node of Ranvier.
Eur J Pharmacol. 1979 Jun;56(1-2):51-60. doi: 10.1016/0014-2999(79)90432-1.
10
Specific and unspecific charges at the sodium channels of the nerve membrane.
Pflugers Arch. 1974;351(3):207-29. doi: 10.1007/BF00586919.

引用本文的文献

1
Endothelial Trauma Depends on Surface Charge and Extracellular Calcium Levels.
bioRxiv. 2025 Jul 18:2025.07.13.664578. doi: 10.1101/2025.07.13.664578.
5
High calcium concentrations reduce cellular excitability of mouse MNTB neurons.
Brain Res. 2023 Dec 1;1820:148568. doi: 10.1016/j.brainres.2023.148568. Epub 2023 Sep 7.
6
A century of exercise physiology: key concepts in muscle cell volume regulation.
Eur J Appl Physiol. 2022 Mar;122(3):541-559. doi: 10.1007/s00421-021-04863-6. Epub 2022 Jan 17.
7
Ionic channels in nerve membranes, 50 years on.
Prog Biophys Mol Biol. 2022 Mar-May;169-170:12-20. doi: 10.1016/j.pbiomolbio.2021.11.003. Epub 2021 Nov 29.
9
Analysis of an electrostatic mechanism for ΔpH dependent gating of the voltage-gated proton channel, H1, supports a contribution of protons to gating charge.
Biochim Biophys Acta Bioenerg. 2021 Nov 1;1862(11):148480. doi: 10.1016/j.bbabio.2021.148480. Epub 2021 Aug 5.

本文引用的文献

1
Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions.
J Gen Physiol. 1962 Jul;45(6):1217-38. doi: 10.1085/jgp.45.6.1217.
2
THE BINDING OF CALCIUM ION BY THE HUMAN ERYTHROCYTE MEMBRANE.
Arch Biochem Biophys. 1964 Jun;105:582-9. doi: 10.1016/0003-9861(64)90054-2.
3
SODIUM CONDUCTANCE SHIFT IN AN AXON INTERNALLY PERFUSED WITH A SUCROSE AND LOW-POTASSIUM SOLUTION.
J Physiol. 1964 Aug;172(2):163-73. doi: 10.1113/jphysiol.1964.sp007410.
4
CALCIUM AND MAGNESIUM BINDING PROPERTIES OF CELL MEMBRANE MATERIALS.
J Cell Comp Physiol. 1963 Dec;62:311-7. doi: 10.1002/jcp.1030620311.
5
The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes.
Arch Biochem Biophys. 1963 Jan;100:119-30. doi: 10.1016/0003-9861(63)90042-0.
6
The surface structure of erythrocytes from some animal sources.
Arch Biochem Biophys. 1963 Mar;100:493-502. doi: 10.1016/0003-9861(63)90117-6.
9
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
10
The pH sensitivity of the chloride conductance of frog skeletal muscle.
J Physiol. 1967 Apr;189(3):403-25. doi: 10.1113/jphysiol.1967.sp008176.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验