Suppr超能文献

神经纤维中的钠失活

Sodium inactivation in nerve fibers.

作者信息

Hoyt R C

出版信息

Biophys J. 1968 Oct;8(10):1074-97. doi: 10.1016/S0006-3495(68)86540-3.

Abstract

A number of models proposed to account for the sodium conductance changes are shown to fall into two classes. The Hodgkin-Huxley (HH) model falls into a class (I) in which the conductance depends on two or more independent variables controlled by independent processes. The Mullins, Hoyt, and Goldman models fall into class II in which conductance depends directly on one variable only, a variable which is controlled by two or more coupled processes. The HH and Hoyt models are used as specific examples of the two classes. It is shown that, contrary to a recently published report, the results from double experiments can be equally well accounted for by both models. It is also shown that steady-state conditioning, or "inactivation," curves, obtained at more than one test potential, can be used to distinguish the two models. The HH equations predict that such curves should be shifted, by very small amounts, in the hyperpolarizing direction when more depolarizing test potentials are used, while the Hoyt model predicts that they should be shifted in the depolarizing direction, by quite appreciable amounts. Several pieces of published experimental information are used as tests of these predictions, and give tentative support to the class II model. Further experiments are necessary before a definite conclusion can be reached.

摘要

为解释钠电导变化而提出的许多模型可分为两类。霍奇金 - 赫胥黎(HH)模型属于第一类,其中电导取决于由独立过程控制的两个或更多独立变量。穆林斯、霍伊特和戈德曼模型属于第二类,其中电导仅直接取决于一个变量,该变量由两个或更多耦合过程控制。HH模型和霍伊特模型被用作这两类的具体示例。结果表明,与最近发表的一份报告相反,双实验的结果可以由这两个模型同样很好地解释。还表明,在多个测试电位下获得的稳态条件或“失活”曲线可用于区分这两个模型。HH方程预测,当使用更多去极化测试电位时,此类曲线应在超极化方向上有非常小的偏移,而霍伊特模型预测它们应在去极化方向上有相当可观的偏移。已发表的几条实验信息被用作对这些预测的检验,并为第二类模型提供了初步支持。在得出明确结论之前,还需要进一步的实验。

相似文献

1
Sodium inactivation in nerve fibers.
Biophys J. 1968 Oct;8(10):1074-97. doi: 10.1016/S0006-3495(68)86540-3.
3
Sodium inactivation. Experimental test of two models.
Biophys J. 1970 Jul;10(7):610-7. doi: 10.1016/S0006-3495(70)86323-8.
5
Firing behaviour in stochastic nerve membrane models with different pore densities.
Acta Physiol Scand. 1980 Jan;108(1):49-60. doi: 10.1111/j.1748-1716.1980.tb06499.x.
6
An assessment of a coupled three-state kinetic model for sodium conductance changes.
Biophys J. 1976 Apr;16(4):291-301. doi: 10.1016/S0006-3495(76)85689-5.
7
Ionic mechanism of the salicylate block of nerve conduction.
J Pharmacol Exp Ther. 1976 Nov;199(2):454-63.
8
On subthreshold solutions of the Hodgkin-Huxley equations.
Proc Natl Acad Sci U S A. 1977 Dec;74(12):5199-202. doi: 10.1073/pnas.74.12.5199.
10
Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations.
Acta Physiol Scand. 1979 Dec;107(4):343-63. doi: 10.1111/j.1748-1716.1979.tb06486.x.

引用本文的文献

2
Modeling state-dependent inactivation of membrane currents.
Biophys J. 1994 Aug;67(2):515-20. doi: 10.1016/S0006-3495(94)80518-1.
4
Delays in inactivation development and activation kinetics in myxicola giant axons.
J Gen Physiol. 1982 Jul;80(1):83-102. doi: 10.1085/jgp.80.1.83.
5
Inactivation of voltage-gated delayed potassium current in molluscan neurons. A kinetic model.
Biophys J. 1981 Dec;36(3):519-32. doi: 10.1016/S0006-3495(81)84750-9.
6
Sodium channel inactivation in the crayfish giant axon. Must channels open before inactivating?
Biophys J. 1981 Sep;35(3):595-614. doi: 10.1016/S0006-3495(81)84815-1.
7
On making models of the sodium inactivation of axonal membranes.
Biophys J. 1971 Apr;11(4):385-6. doi: 10.1016/S0006-3495(71)86222-7.
8
Independence of the sodium and potassium conductance channels. A kinetic argument.
Biophys J. 1971 Jan;11(1):110-22. doi: 10.1016/S0006-3495(71)86199-4.
9
Sodium inactivation. Experimental test of two models.
Biophys J. 1970 Jul;10(7):610-7. doi: 10.1016/S0006-3495(70)86323-8.

本文引用的文献

2
An analysis of pore size in excitable membranes.
J Gen Physiol. 1960 May;43(5):105-17. doi: 10.1085/jgp.43.5.105.
4
THE SQUID GIANT AXON. MATHEMATICAL MODELS.
Biophys J. 1963 Sep;3(5):399-431. doi: 10.1016/s0006-3495(63)86829-0.
5
Steady state inactivation of sodium permeability in myelinated nerve fibres of Xenopus laevis.
J Physiol. 1959 Oct;148(3):671-6. doi: 10.1113/jphysiol.1959.sp006316.
6
Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis.
J Physiol. 1960 Jun;151(3):491-501. doi: 10.1113/jphysiol.1960.sp006455.
7
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
9
Effects of internal sodium on ionic conductance of internally perfused axons.
Nature. 1966 Nov 5;212(5062):614-6. doi: 10.1038/212614a0.
10
The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons.
J Physiol. 1965 Oct;180(4):821-36. doi: 10.1113/jphysiol.1965.sp007733.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验