Burton S D, Morita R Y, Miller W
J Bacteriol. 1966 Mar;91(3):1192-200. doi: 10.1128/jb.91.3.1192-1200.1966.
Burton, Sheril D. (Institute of Marine Science, University of Alaska, College), Richard Y. Morita, and Wayne Miller. Utilization of acetate by Beggiatoa. J. Bacteriol. 91:1192-1200. 1966.-A proposed system which would permit acetate incorporation into four-carbon compounds without the presence of key enzymes of the citric acid cycle or glyoxylate cycle is described. In this system, acetyl-coenzyme A (CoA) is condensed with glyoxylate to form malate, which, in turn, is converted to oxaloacetate. Oxaloacetate then reacts with glutamate to produce alpha-ketoglutarate, which is subsequently converted to isocitrate. Cleavage of isocitrate produces glyoxylate and succinate. Thus, the proposed system is similar to the glyoxylate bypass in that malate is produced from glyoxylate and acetyl-CoA, but differs from both the citric acid cycle and the glyoxylate bypass, since citrate and fumarate are not involved. Fumarase, aconitase, catalase, citritase, pyruvate kinase, enolase, phosphoenolpyruvate carboxylase, lactic dehydrogenase, alpha-ketoglutarate dehydrogenase, and condensing enzyme were not detectable in crude extracts of Beggiatoa. Succinate was oxidized by a soluble enzyme not associated with an electron-transport particle. Isocitrate was identified as the sole compound labeled when C(14)O(2) was added to a reduced nicotinamide adenine dinucleotide, CO(2) generating system (crystalline glucose-6-phosphate dehydrogenase and glucose-6-phosphate) in the presence of alpha-ketoglutarate.
伯顿,谢里尔·D.(阿拉斯加大学海洋科学研究所,学院),理查德·Y.森田,以及韦恩·米勒。贝氏硫菌对乙酸盐的利用。《细菌学杂志》91:1192 - 1200。1966年。——描述了一个拟议的系统,该系统能在没有柠檬酸循环或乙醛酸循环关键酶的情况下使乙酸盐掺入四碳化合物中。在这个系统中,乙酰辅酶A(CoA)与乙醛酸缩合形成苹果酸,苹果酸进而转化为草酰乙酸。草酰乙酸然后与谷氨酸反应生成α - 酮戊二酸,α - 酮戊二酸随后转化为异柠檬酸。异柠檬酸裂解产生乙醛酸和琥珀酸。因此,拟议的系统与乙醛酸支路相似,因为苹果酸由乙醛酸和乙酰CoA产生,但与柠檬酸循环和乙醛酸支路都不同,因为不涉及柠檬酸和富马酸。在贝氏硫菌的粗提物中未检测到延胡索酸酶、乌头酸酶、过氧化氢酶、柠檬酸酶、丙酮酸激酶、烯醇化酶、磷酸烯醇丙酮酸羧化酶、乳酸脱氢酶、α - 酮戊二酸脱氢酶和缩合酶。琥珀酸被一种与电子传递颗粒无关的可溶性酶氧化。当在α - 酮戊二酸存在的情况下,将C(14)O(2)添加到一个还原型烟酰胺腺嘌呤二核苷酸、CO(2)生成系统(结晶葡萄糖 - 6 - 磷酸脱氢酶和葡萄糖 - 6 - 磷酸)中时,异柠檬酸被鉴定为唯一被标记的化合物。