Suppr超能文献

对青蛙脊髓中运动神经元之间相互作用的一项研究。

A study of the interaction between motoneurones in the frog spinal cord.

作者信息

Grinnell A D

出版信息

J Physiol. 1966 Feb;182(3):612-48. doi: 10.1113/jphysiol.1966.sp007841.

Abstract
  1. A short-latency interaction between motoneurones has been studied with intracellular and root potential recordings from the isolated spinal cord of the frog. Antidromic stimulation of one ventral root causes brief depolarization (VR-EPSP) of the motoneurones of adjacent, non-excited motoneurones. The summed activity of many such VR-EPSPs can be seen as a brief depolarization (VR-VRP) passing out an adjacent ventral root.2. Both intracellular and root-recorded signs of this interaction are graded in amplitude.3. It was found that this interaction decreased with increasing temperature. This is in contrast to the behaviour of the ventral root potential resulting from dorsal root stimulation (DR-VRP) or the dorsal root potentials resulting from either dorsal root (DR-DRP) or ventral root (VR-DRP) stimulation, all of which increased in amplitude from below 10 to about 17 degrees C.4. Pharmacological evidence suggests that the interaction between motoneurones is not chemically mediated. The VR-VRP was not affected by a large variety of transmitter blocking agents, including curare, dihydro-beta-erythroidine, atropine, succinylcholine, hexamethonium and DOPA, while the VR-DRP, which probably originates with the release of ACh from an axon collateral, was consistently blocked.5. Mg(2+) suppressed the VR-VRP more slowly than the other potentials, and this suppression was increased by adding Ca(2+), rather than reversed, as in the case of the other root potentials, which are presumably mediated by chemical transmission.6. The interaction between motoneurones is strongly facilitated by orthodromic depolarization of the motoneurones being antidromically stimulated. Extracellular recordings within the cord support the conclusion that this facilitation is a result of the enhancement of antidromic invasion, perhaps especially of the dendrites, by slight depolarization.7. One VR-VRP (or VR-EPSP) first suppresses response to another (for about 10 msec), then facilitates response to the second, with maximum effect around 20-40 msec. This is the case whether both stimuli go to the same or to different ventral roots, although occlusion is less and facilitation greater in the latter case. Occlusion of the VR-EPSP also results from full excitation of the cell in which recording is being done.8. The mechanism of this interaction remains uncertain, but it would seem likely that overlapping dendrites of adjacent motoneurones interact with each other electrically through close apposition or specialized contacts. Occlusion would result from the refractoriness of strongly depolarized dendrites, facilitation from the enhancement of invasion of antidromically stimulated motoneurones by the weaker (or residual) depolarization occurring after earlier activity of motoneurones or their dendrites.
摘要
  1. 利用从青蛙离体脊髓进行的细胞内记录和神经根电位记录,对运动神经元之间的短潜伏期相互作用进行了研究。对一条腹根进行逆向刺激会导致相邻未兴奋运动神经元的运动神经元出现短暂去极化(VR-EPSP)。许多此类VR-EPSP的总和活动可表现为从相邻腹根传出的短暂去极化(VR-VRP)。

  2. 这种相互作用在细胞内记录和神经根记录中的表现,其幅度都是分级的。

  3. 研究发现,这种相互作用会随着温度升高而减弱。这与背根刺激产生的腹根电位(DR-VRP),或背根(DR-DRP)或腹根(VR-DRP)刺激产生的背根电位的表现相反,所有这些电位的幅度在10摄氏度以下至约17摄氏度之间都会增大。

  4. 药理学证据表明,运动神经元之间的相互作用不是化学介导的。VR-VRP不受多种递质阻断剂的影响,包括箭毒、二氢-β-刺桐碱、阿托品、琥珀酰胆碱、六甲铵和多巴,而可能源于轴突侧支释放乙酰胆碱的VR-DRP则持续被阻断。

  5. Mg(2+)对VR-VRP的抑制作用比其他电位更慢,并且通过添加Ca(2+)会增强这种抑制作用,而不像其他可能由化学传递介导的神经根电位那样被逆转。

  6. 对接受逆向刺激的运动神经元进行顺向去极化,会强烈促进运动神经元之间的相互作用。脊髓内的细胞外记录支持这样的结论,即这种促进作用是轻微去极化增强逆向入侵(可能特别是对树突的入侵)的结果。

  7. 一个VR-VRP(或VR-EPSP)首先会抑制对另一个刺激的反应(约10毫秒),然后促进对第二个刺激的反应,最大效应出现在20 - 40毫秒左右。无论两个刺激是作用于同一腹根还是不同腹根,都是如此,尽管在后一种情况下,抑制作用较小而促进作用较大。对正在进行记录的细胞进行完全兴奋也会导致VR-EPSP的抑制。

  8. 这种相互作用的机制仍然不确定,但相邻运动神经元重叠的树突似乎可能通过紧密并置或特殊接触相互进行电相互作用。抑制作用可能是由于强烈去极化的树突的不应性导致的,促进作用则是由于运动神经元或其树突早期活动后出现的较弱(或残余)去极化增强了对接受逆向刺激的运动神经元的入侵。

相似文献

8
Tubocurarine and strychnine block Renshaw cell inhibition in the isolated mammalian spinal cord.
Gen Pharmacol. 1990;21(4):499-509. doi: 10.1016/0306-3623(90)90705-q.
9
Organization of electrical coupling between frog lumbar motoneurons.
J Neurophysiol. 1983 Mar;49(3):730-44. doi: 10.1152/jn.1983.49.3.730.

引用本文的文献

本文引用的文献

1
Neurophysiology: United States-Japan Joint Symposium.
Science. 1964 Jun 12;144(3624):1361-4. doi: 10.1126/science.144.3624.1361.
2
The interpretation of potential changes in the spinal cord.脊髓潜在变化的解读。
J Physiol. 1938 Apr 14;92(3):276-321. doi: 10.1113/jphysiol.1938.sp003603.
3
TEMPERATURE AND DENDRITIC RESPONSE OF SPINAL MOTONEURONS.脊髓运动神经元的温度与树突反应
Proc Natl Acad Sci U S A. 1959 Apr;45(4):589-92. doi: 10.1073/pnas.45.4.589.
10
RECURRENT FACILITATION OF FROG MOTONEURONS.青蛙运动神经元的反复易化
J Neurophysiol. 1963 Nov;26:877-93. doi: 10.1152/jn.1963.26.6.877.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验