Suppr超能文献

Effects of chemical modification of amino and sulfhydryl groups on the voltage-clamped frog node of Ranvier.

作者信息

Rack M, Hu S L, Rubly N, Waschow C

出版信息

Pflugers Arch. 1984 Apr;400(4):403-8. doi: 10.1007/BF00587540.

Abstract

Several reagents that react with sulfhydryl and amino groups were applied to voltage-clamped single nerve fibres of the frog. The fibres were exposed to comparable amounts of the chemical reagents for relatively short times. 3-(p-Hydroxyphenyl)propionic acid N-hydroxysuccinimide ester (HPPS), a substance which preferentially modifies amino groups, irreversibly reduced the size of the sodium and potassium current. The effect of HPPS on the Na current could be removed only partially by hyperpolarizing prepulses. N-ethylmaleimide (NEM), a reagent that preferentially reacts with sulfhydryl groups produced a small decrease of the sodium current which was removed almost completely by hyperpolarizing prepulses. NEM and HPPS shifted the voltage dependence of sodium inactivation, h infinity (E), to more negative values of membrane potential, but had little effect on the time course of sodium activation and inactivation. Pretreatment of a fibre with NEM did not prevent the action of HPPS; however, pretreatment of a fibre with HPPS decreased considerably the shift of the h infinity (E) curve caused by NEM. Our results suggest that modification of membrane bound amino groups affects the size of the ionic currents and the inactivation process. Although reagents that react with sulfhydryl groups were found to affect channel function, no definite evidence for the presence or absence of a functionally important sulfhydryl group on sodium channels has been obtained.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验