Huidobro-Toro J P, Zhu Y X
Eur J Pharmacol. 1984 Jul 13;102(2):237-50. doi: 10.1016/0014-2999(84)90255-3.
Neurotensin caused a complex muscular response of the longitudinal muscle-myenteric plexus preparation of guinea-pig ileum: picomoles of neurotensin produced inhibition while larger concentrations caused an inhibitory effect followed by a delayed dose-dependent contraction. The inhibitory phase of the neurotensin-induced muscular activity was not modified by tetrodotoxin but was potently antagonized in a non-competitive manner by apamin, a bee venom toxin. The contractile component was blocked by tetrodotoxin but not by apamin. These toxins were used to dissect the neurotensin muscular response into an inhibitory phase and an excitatory component. It was possible to further characterize the two neurotensin muscular components by their kinetics of desensitization. The inhibitory neurotensin response showed a fast rate of desensitization and presented a relatively low spare receptor capacity. In contrast, desensitization to the excitatory action of neurotensin was much slower, the excitatory receptors apparently having a larger spare receptor capacity. Desensitization to the action of neurotensin was selective for the neuropeptide not altering the contractile activity of substance P, angiotensin II, bradykinin, histamine or acetylcholine. These results strongly suggest the presence of two subsets of neurotensin receptors in the ileum: the inhibitory set probably localized at the postsynaptic effector level and excitatory neurotensin receptors probably of neuronal origin whose function is probably to modulate the release of neurotransmitters. The physiological implications of these two subtypes of neurotensin receptors in the control of gastrointestinal motility are discussed.