Nocek J M, Kurtz D M, Pickering R A, Doyle M P
J Biol Chem. 1984 Oct 25;259(20):12334-8.
In anaerobic phosphate buffer, pH 6.3-7.5, deoxyhemerythrin is oxidized to semi-methemerythrin (semi-met) by excess sodium nitrite. This oxidation is quantitative as judged by EPR spectroscopy. Further oxidation to methemerythrin is not detected. The absorbance changes of hemerythrin during the oxidation are biphasic. The rate of the faster first phase is linearly dependent on [H+] and [NO2-] suggesting that the oxidant is nitrous acid rather than nitrite. During the slower second phase, the characteristic EPR spectrum of semi-methemerythrin appears. The first phase can be interpreted by a scheme in which nitrous acid transforms deoxyhemerythrin (FeIIFeII) to the semi-met nitrosyl adduct (FeIIFeIIINO) and hydroxide. Independent experiments confirm that the combination of semi-met plus NO produces an EPR-silent adduct. The rates of the absorbance changes for the second phase are nearly independent of nitrite concentration and pH in the range 6.3-7.5. This slower phase involves the transformation of the EPR-silent intermediate to the semi-met nitrite adduct (FeIIFeIIINO2-) and is consistent with rate-limiting dissociation of nitric oxide followed by rapid attachment of nitrite. Nitrite appears to be a unique oxidant of deoxyhemerythrin in that when employed in excess, the final, stable product is semi-met- rather than methemerythrin. The lack of reactivity of ethyl nitrite with deoxyhemerythrin suggests that HONO oxidizes deoxyhemerythrin via an "inner-sphere" process in contrast to oxidants such as Fe(CN)6(3-). A proposed generalization is that excesses of "inner-sphere" oxidants convert deoxy to (semi-met)R, which is stabilized with respect to (semi-met)R, which is stabilized with respect to (semi-met)0 and met because the oxidant and/or a product of the oxidant can bind to the iron site.
在pH值为6.3 - 7.5的厌氧磷酸盐缓冲液中,脱氧血绿蛋白被过量的亚硝酸钠氧化为半高铁血绿蛋白(半高铁)。通过电子顺磁共振光谱法判断,这种氧化是定量的。未检测到进一步氧化为高铁血绿蛋白的情况。血绿蛋白在氧化过程中的吸光度变化是双相的。较快的第一阶段的速率与[H⁺]和[NO₂⁻]呈线性相关,这表明氧化剂是亚硝酸而不是亚硝酸盐。在较慢的第二阶段,出现了半高铁血绿蛋白的特征性电子顺磁共振光谱。第一阶段可以用这样一个方案来解释:亚硝酸将脱氧血绿蛋白(FeIIFeII)转化为半高铁亚硝酰加合物(FeIIFeIIINO)和氢氧化物。独立实验证实,半高铁加NO会产生一种电子顺磁共振沉默的加合物。第二阶段吸光度变化的速率在6.3 - 7.5范围内几乎与亚硝酸盐浓度和pH值无关。这个较慢的阶段涉及电子顺磁共振沉默中间体向半高铁亚硝酸盐加合物(FeIIFeIIINO₂⁻)的转化,并且与一氧化氮的限速解离随后亚硝酸盐的快速附着相一致。亚硝酸盐似乎是脱氧血绿蛋白的一种独特氧化剂,因为当过量使用时,最终稳定的产物是半高铁而不是高铁血绿蛋白。亚硝酸乙酯与脱氧血绿蛋白缺乏反应性表明,与诸如Fe(CN)₆³⁻等氧化剂相比,HONO通过“内球”过程氧化脱氧血绿蛋白。一个提出的普遍规律是,过量的“内球”氧化剂将脱氧物转化为(半高铁)R,相对于(半高铁)0和高铁而言,(半高铁)R是稳定的,因为氧化剂和/或氧化剂的产物可以与铁位点结合。