Nocek J M, Kurtz D M, Sage J T, Xia Y M, Debrunner P, Shiemke A K, Sanders-Loehr J, Loehr T M
Department of Chemistry, Iowa State University, Ames 50011.
Biochemistry. 1988 Feb 9;27(3):1014-24. doi: 10.1021/bi00403a026.
Nitric oxide forms adducts with the binuclear iron site of hemerythrin (Hr) at [Fe(II),Fe(II)]deoxy and [Fe(II),Fe(III)]semimet oxidation levels. With deoxyHr our results establish that (i) NO binds reversibly, forming a complex which we label deoxyHrNO, (ii) NO forms a similar but distinct complex in the presence of fluoride, which we label deoxyHrFNO, (iii) NO is directly coordinated to one iron atom of the binuclear pair in these adducts, most likely in a bent end-on fashion, and (iv) the iron atoms in the binuclear sites of both deoxyHrNO and deoxyHrFNO are antiferromagnetically coupled, thereby generating unique electron paramagnetic resonance (EPR) detectable species. The novel EPR signal of deoxyHrNO (deoxyHrFNO) with g[[ = 2.77 (2.58) and g = 1.84 (1.80) is explained by the magnetic interaction of the Fe(II) (S' = 2) and [FeNO]7 (S = 3/2) centers observed by Mössbauer spectroscopy. Antiferromagnetic coupling leads to a ground state of Seff = 1/2. Analysis of the EPR parameters using the isotropic spin-exchange Hamiltonian, Hex = 2JS3/2.S2, and including zero-field splitting leads to a coupling constant, -J approximately 23 cm-1, for deoxyHrNO. The resonance Raman spectrum of deoxyHrNO shows features at 433 and 421 cm-1 that shift downward with 15N16O and that are assigned to stretching and bending modes, respectively, of the [FeNO]7 unit. Sensitivity of the bending mode to D2O suggests that bound NO participates in hydrogen bonding. We propose that the terminal oxygen atom of NO is hydrogen bonded to the proton of the mu-hydroxo bridge in the Fe-(OH)-Fe unit. A bent Fe-N-O geometry is supported by spectroscopic and structural comparisons to synthetic complexes and is consistent with a limiting [FeII,FeIIINO-] formulation for deoxyHrNO. Reversibility of NO binding to deoxyHr is demonstrated by bleaching of the optical and EPR spectra of deoxyHrNO upon additions of excess N3- or CNO-. DeoxyHrNO undergoes autoxidation under anaerobic conditions over the course of several hours. The product of this autoxidation appears to be an EPR-silent NO adduct of semimetHr. The formal one-electron oxidations of the binuclear iron site of deoxyHr by NO and by HNO2 can conceivably occur with no net change in charge on the iron site. In contrast, autoxidation of oxy- to metHr requires a change in net charge on the iron site, which may provide a kinetic barrier.
一氧化氮在[Fe(II),Fe(II)]脱氧和[Fe(II),Fe(III)]半金属氧化水平下与蚯蚓血红蛋白(Hr)的双核铁位点形成加合物。对于脱氧Hr,我们的结果表明:(i)NO可逆结合,形成一种我们标记为脱氧HrNO的复合物;(ii)在氟化物存在下,NO形成一种类似但不同的复合物,我们标记为脱氧HrFNO;(iii)在这些加合物中,NO直接与双核对中的一个铁原子配位,最有可能是以弯曲的端对端方式;(iv)脱氧HrNO和脱氧HrFNO双核位点中的铁原子是反铁磁耦合的,从而产生独特的可通过电子顺磁共振(EPR)检测的物种。脱氧HrNO(脱氧HrFNO)具有g[[ = 2.77(2.58)和g = 1.84(1.80)的新型EPR信号,这可通过穆斯堡尔光谱观察到的Fe(II)(S' = 2)和[FeNO]7(S = 3/2)中心的磁相互作用来解释。反铁磁耦合导致基态Seff = 1/2。使用各向同性自旋交换哈密顿量Hex = 2JS3/2.S2并包括零场分裂对EPR参数进行分析,得出脱氧HrNO的耦合常数-J约为23 cm-1。脱氧HrNO的共振拉曼光谱在433和421 cm-1处有特征峰,随着15N16O的加入峰位向下移动,分别归因于[FeNO]7单元的拉伸和弯曲模式。弯曲模式对D2O的敏感性表明结合的NO参与了氢键形成。我们提出NO的末端氧原子与Fe-(OH)-Fe单元中μ-羟基桥的质子形成氢键。通过与合成配合物的光谱和结构比较,支持了弯曲的Fe-N-O几何结构,并且与脱氧HrNO的极限[FeII,FeIIINO-]结构一致。通过加入过量的N3-或CNO-使脱氧HrNO的光学和EPR光谱漂白,证明了NO与脱氧Hr结合的可逆性。脱氧HrNO在厌氧条件下经过数小时会发生自氧化。这种自氧化的产物似乎是半金属Hr的一种EPR沉默的NO加合物。可以想象,NO和HNO2对脱氧Hr双核铁位点的形式上的单电子氧化在铁位点上电荷没有净变化的情况下发生。相比之下,从氧合Hr到高铁Hr的自氧化需要铁位点上净电荷的变化,这可能提供了一个动力学障碍。