Suppr超能文献

Density-associated loss of functional receptors for somatomedin-C/insulinlike growth factor I (SM-C/IGF-I) on cultured human fibroblast monolayers.

作者信息

Rosenfeld R G, Dollar L A, Conover C A

出版信息

J Cell Physiol. 1984 Nov;121(2):419-24. doi: 10.1002/jcp.1041210221.

Abstract

The mitogenic activity of somatomedin-C/insulinlike growth factor-I (SM-C/IGF-I) appears to be greatly influenced by cell culture conditions, especially the presence of other growth factors and nutrients in the culture medium. To investigate the effect of cell density on SM-C/IGF-I activity, we have evaluated SM-C/IGF-I binding and stimulation of DNA synthesis and cell replication as a function of cell density in cultured human fibroblast monolayers. At fibroblast concentrations of 2.7 X 10(5) and 1.48 X 10(6) cells per 60-mm dish, specific binding of [125I]SM-C/IGF-I per 10(6) cells was 170% higher in sparse than dense monolayers (9.3% vs. 3.4%). Increased binding in sparse monolayers was attributable to approximately twice as many receptors in sparse as in dense cells (31,000 vs. 16,000 sites per cell), as well as to a modest increase in the affinity constant. Similarly, half-maximal stimulation of [methyl-3H]thymidine incorporation was achieved at SM-C/IGF-I concentrations of 2.5 ng/ml in sparse cells but required 20 ng/ml in dense cells. Although this required only 45% occupancy of membrane receptors on sparse cells, and almost 80% occupancy on dense cells, the total number of occupied receptors was similar in both sparse and dense cells (approximately 13,000 receptors/cell for half-maximal stimulation). The presence of increased numbers of "functional receptors" on sparse fibroblasts thus results in enhanced sensitivity to SM-C/IFG-I stimulation of DNA synthesis and cell replication. Progressive decreases in the number of functional receptors, secondary to cell crowding, may contribute to density-dependent inhibition of fibroblast growth.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验