Suppr超能文献

大肠杆菌B中谷氨酸转运机制。2. 由人工施加的跨细胞质膜的质子和钠离子梯度驱动的谷氨酸转运动力学。

Mechanism of glutamate transport in Escherichia coli B. 2. Kinetics of glutamate transport driven by artificially imposed proton and sodium ion gradients across the cytoplasmic membrane.

作者信息

Fujimura T, Yamato I, Anraku Y

出版信息

Biochemistry. 1983 Apr 12;22(8):1959-65. doi: 10.1021/bi00277a034.

Abstract

Simultaneous imposition of a pH gradient (delta pH, interior alkaline) and a sodium gradient (delta pNa, [Na+]out greater than [Na+]in) across cytoplasmic membrane vesicles from Escherichia coli B led to a several hundred fold accumulation of glutamate. Although less effective, delta pH (interior alkaline)( alone caused accumulation of glutamate in the presence of Na+. In addition, delta pNa ([Na+]out greater than [Na+]in) alone also drove the transport system, where the maximum level of glutamate accumulation was affected by the pH of the medium. A membrane potential imposed by valinomycin-induced K+ diffusion (interior negative) enhanced the accumulation, indicating that the system operation in an electrogenic manner. The Michaelis constant of glutamate transport was greatly affected by changes in the concentrations of both Na+ and H+ and could be expressed by a linear combination of the reciprocals of the Na+ and H+ concentrations in the medium. On the contrary, a membrane potential (interior negative) exerted its effect by increasing the maximum velocity. When membrane vesicles were loaded with glutamate and Na+, but not with glutamate alone, rapid efflux of glutamate with Na+ as the cocation down the concentration gradients took place upon dilution. These results indicate that both Na+ and H+ are syn-coupled ions of glutamate transport in E. coli B and that the carrier/Na+/H+/Glu- complex observed in the binding reaction is an intermediate in the transport.

摘要

在大肠杆菌B的细胞质膜囊泡上同时施加pH梯度(ΔpH,内部呈碱性)和钠梯度(ΔpNa,[Na⁺]外大于[Na⁺]内),会导致谷氨酸积累数百倍。虽然效果较差,但单独的ΔpH(内部呈碱性)在有Na⁺存在时会引起谷氨酸积累。此外,单独的ΔpNa([Na⁺]外大于[Na⁺]内)也驱动转运系统,其中谷氨酸积累的最大水平受培养基pH影响。缬氨霉素诱导的K⁺扩散产生的膜电位(内部呈负电)增强了积累,表明该系统以生电方式运行。谷氨酸转运的米氏常数受Na⁺和H⁺浓度变化的极大影响,并且可以通过培养基中Na⁺和H⁺浓度倒数的线性组合来表示。相反,膜电位(内部呈负电)通过增加最大速度发挥作用。当膜囊泡装载有谷氨酸和Na⁺,而不是仅装载谷氨酸时,稀释后谷氨酸会与作为共转运阳离子的Na⁺一起顺着浓度梯度快速外流。这些结果表明,Na⁺和H⁺都是大肠杆菌B中谷氨酸转运的协同偶联离子,并且在结合反应中观察到的载体/Na⁺/H⁺/Glu⁻复合物是转运过程中的中间体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验