Suppr超能文献

Na-K activated ATPase and the release of acetylcholine and noradrenaline.

作者信息

Vizi E S, Tŏrŏk T, Seregi A, Serfŏzŏ P, Adam-Vizi V

出版信息

J Physiol (Paris). 1982;78(4):399-406.

PMID:6133950
Abstract
  1. It has been shown that different experimental conditions known to inhibit Na-K-activated ATPase, and enzyme present in the neuronal membranes, are able to promote transmitter release (ACh, NA, etc.) from different tissues, simply by making the membrane leaky. 2. Under physiological conditions, Ca entering the cell transiently inhibits membrane ATPase, resulting in a transient change in membrane permeability and a subsequent release of transmitter. 3. When membrane ATPase inhibitor was used one part of the release proved to be Ca-independent. This finding indicates that the voltage and Ca-dependent link of transmitter release can be by-passed by direct membrane ATPase inhibitors (ouabain). 4. Neurochemical and electrophysiological evidence was obtained on mouse diaphragm that most of the released ACh is cytoplasmic and Na-K ATPase inhibition is responsible for its release. 5. The stimulation of membrane ATPase (by switching off K and its readmission) results in an inhibition of both ACh and noradrenaline release evoked by axonal stimulation. 6. It is suggested that, in those cases where the varicose axon terminals do not make synaptic contact, the transmitter released from the cytoplasmic pool contributes to the transmission, since during diffusion (sometimes few thousand nm) transmitter of different origins becomes mixed up.
摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验