Suppr超能文献

Na-K activated ATPase and the release of acetylcholine and noradrenaline.

作者信息

Vizi E S, Tŏrŏk T, Seregi A, Serfŏzŏ P, Adam-Vizi V

出版信息

J Physiol (Paris). 1982;78(4):399-406.

PMID:6133950
Abstract
  1. It has been shown that different experimental conditions known to inhibit Na-K-activated ATPase, and enzyme present in the neuronal membranes, are able to promote transmitter release (ACh, NA, etc.) from different tissues, simply by making the membrane leaky. 2. Under physiological conditions, Ca entering the cell transiently inhibits membrane ATPase, resulting in a transient change in membrane permeability and a subsequent release of transmitter. 3. When membrane ATPase inhibitor was used one part of the release proved to be Ca-independent. This finding indicates that the voltage and Ca-dependent link of transmitter release can be by-passed by direct membrane ATPase inhibitors (ouabain). 4. Neurochemical and electrophysiological evidence was obtained on mouse diaphragm that most of the released ACh is cytoplasmic and Na-K ATPase inhibition is responsible for its release. 5. The stimulation of membrane ATPase (by switching off K and its readmission) results in an inhibition of both ACh and noradrenaline release evoked by axonal stimulation. 6. It is suggested that, in those cases where the varicose axon terminals do not make synaptic contact, the transmitter released from the cytoplasmic pool contributes to the transmission, since during diffusion (sometimes few thousand nm) transmitter of different origins becomes mixed up.
摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验