Suppr超能文献

Long-term potentiation in the hippocampus.

作者信息

Voronin L L

出版信息

Neuroscience. 1983 Dec;10(4):1051-69. doi: 10.1016/0306-4522(83)90099-4.

Abstract

Long-term potentiation of field and single neuronal responses recorded in various hippocampal fields is described on the basis of author's and literary data. Most of intrahippocampal and extrinsic connections in both in vivo and in vitro hippocampal preparations show this phenomenon after one or several conditioning trains of comparatively short duration (20 s or less) at various frequencies (from 10 to 400 Hz). Properties of hippocampal potentiation are described. The properties include long term persistence (hours and days) of the potentiated response, its low frequency depression, self-restoration after the depression, specificity of the potentiation for the tetanized pathway, necessity of activation of a sufficient number of neuronal elements ('cooperativity') to produce the potentiation, possible involvement of 'reinforcing' brain structures during conditioning tetanization. These properties are distinct from those of 'usual' short-term post-tetanic potentiation and lead to the suggestion that the neuronal mechanisms underlying long-term post-tetanic are similar to those underlying memory and behavioral-conditioned reflex. Neurophysiological mechanisms of long-term potentiation are discussed. The main mechanism consists in an increase in efficacy of excitatory synapses as shown by various methods including intracellular recording and quantal analysis. The latter favours presynaptic localization of changes of synaptic efficacy showing increase in the number of transmitter quanta released per presynaptic impulse. However, changes in the number of subsynaptic receptors or localized changes in dendritic postsynaptic membrane are not excluded. Biochemical studies indicate the increase in transmitter release and calcium-dependent phosphorylation of pyruvate dehydrogenase after tetanization. Instances of persistent response facilitations at other levels of the vertebrate central nervous system (especially at neocortical level) are considered and compared with hippocampal long-term potentiation. It is suggested that modifiable excitatory synapses necessary for learning have been identified in studies of long-term potentiation. These synapses are presumably modified as a result of close sequential activation of the following three structures: excitatory presynaptic fibers, the postsynaptic neuron and a 'reinforcing' brain system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验