Kudo I, Leineweber M, RajBhandary U L
Proc Natl Acad Sci U S A. 1981 Aug;78(8):4753-7. doi: 10.1073/pnas.78.8.4753.
We have cloned the Escherichia coli tyrosine-inserting amber suppressor tRNA gene into the recombinant single-strand phage M12mp3. By using the M13mp3SuIII+ recombinant phage DNA as template and an oligonucleotide bearing a mismatch as primer, we have synthesized in vitro an M13mp3SuIII heteroduplex DNA that has a single mismatch at a predetermined site in the tRNA gene. Transformation of E. coli with the heteroduplex DNA yielded M13 recombinant phages carrying a mutant suppressor tRNA gene in which the sequence G-T-T-C, corresponding to the universal G-T-pseudouracil-C sequence in E. coli tRNAs, is changed to G-A-T-C. The mutant DNA has been characterized by restriction mapping and by sequence analysis. In contrast to results with the wild-type suppressor tRNA gene, cells transformed with recombinant plasmids carrying the mutant tRNA gene are phenotypically Su-. Thus, the single nucleotide change introduced has inactivated the function of the tRNA gene. By using E. coli minicells for studying the expression in vivo of cloned tRNA genes, we have found that cells transformed with recombinant plasmids carrying the mutant tRNA gene contain very little, if any, mature mutant suppressor tRNA. In contrast, the predominant low molecular weight RNA in cells transformed with recombinant plasmids carrying the wild-type suppressor tRNA gene is the mature tyrosine suppressor tRNA. Thus, while our results imply an important role for the G-T-pseudouracil-C sequence common to all E. coli tRNAs, whether this sequence is essential for tRNA biosynthesis, tRNA stability in vivo, or tRNA function remains to be determined. The procedures used to generate the mutant should be of general application toward site-specific mutagenesis on cloned DNAs, including regions that possess high degrees of secondary structure. In addition, the frequency of mutants among the progeny is high enough to enable one to identify and isolate site-specific mutants on any cloned DNA without requiring phenotypic selection.
我们已将大肠杆菌酪氨酸插入琥珀抑制tRNA基因克隆到重组单链噬菌体M12mp3中。以M13mp3SuIII +重组噬菌体DNA为模板,以带有错配的寡核苷酸为引物,我们在体外合成了一种M13mp3SuIII异源双链DNA,该DNA在tRNA基因的预定位点有一个单错配。用该异源双链DNA转化大肠杆菌,产生了携带突变抑制tRNA基因的M13重组噬菌体,其中对应于大肠杆菌tRNA中通用的G-T-假尿嘧啶-C序列的G-T-T-C序列被改变为G-A-T-C。该突变DNA已通过限制性图谱分析和序列分析进行了表征。与野生型抑制tRNA基因的结果相反,用携带突变tRNA基因的重组质粒转化的细胞在表型上是Su-。因此,引入的单核苷酸变化使tRNA基因的功能失活。通过使用大肠杆菌微小细胞研究克隆的tRNA基因的体内表达,我们发现用携带突变tRNA基因的重组质粒转化的细胞中几乎没有成熟的突变抑制tRNA(如果有的话)。相反,用携带野生型抑制tRNA基因的重组质粒转化的细胞中主要的低分子量RNA是成熟的酪氨酸抑制tRNA。因此,虽然我们的结果暗示了所有大肠杆菌tRNA共有的G-T-假尿嘧啶-C序列的重要作用,但该序列对于tRNA生物合成、体内tRNA稳定性或tRNA功能是否必不可少仍有待确定。用于产生突变体的程序应普遍适用于对克隆DNA进行位点特异性诱变,包括具有高度二级结构的区域。此外,子代中突变体的频率足够高,使得无需表型选择就能鉴定和分离任何克隆DNA上的位点特异性突变体。