Brady S T, Lasek R J, Allen R D
Science. 1982 Dec 10;218(4577):1129-31. doi: 10.1126/science.6183745.
Development of video-enhanced contrast-differential interference contrast for light microscopy has permitted study of both orthograde and retrograde fast axonal transport of membranous organelles in the squid giant axon. This process was found to continue normally for hours after the axoplasm was extruded from the giant axon and removed from the confines of the axonal plasma membrane. It is now possible to follow the movements of the full range of membranous organelles (30-nanometer vesicles to 5000-nanometer mitochondria) in a preparation that lacks a plasma membrane or other permeability barrier. This observation demonstrates that the plasma membrane is not required for fast axonal transport and suggests that action potentials are not involved in the regulation of fast transport. Furthermore, the absence of a permeability barrier surrounding the axoplasm makes this an important model for biochemical pharmacological, and physical manipulations of membranous organelle transport.
视频增强型相差-微分干涉相差光学显微镜的发展,使得对鱿鱼巨大轴突中膜性细胞器的顺行和逆行快速轴突运输的研究成为可能。人们发现,在轴浆从巨大轴突中挤出并脱离轴突质膜的限制后,这个过程仍能正常持续数小时。现在有可能在一个缺乏质膜或其他通透性屏障的标本中追踪全范围的膜性细胞器(30纳米的囊泡到5000纳米的线粒体)的运动。这一观察结果表明,快速轴突运输不需要质膜,并提示动作电位不参与快速运输的调节。此外,轴浆周围不存在通透性屏障,这使得它成为对膜性细胞器运输进行生化、药理学和物理操作的一个重要模型。