Suppr超能文献

Inhibition of LPS toxicity for macrophages by metallothionein-inducing agents.

作者信息

Patierno S R, Costa M, Lewis V M, Peavy D L

出版信息

J Immunol. 1983 Apr;130(4):1924-9.

PMID:6187825
Abstract

Parenteral administration of adrenal corticosteroids or particular transition metal salts are known to protect mice from the lethal effects of bacterial lipopolysaccharides (LPS). To determine if both groups of substances act through similar biologic mechanisms, their capacity to protect macrophages from the direct toxic effects of LPS was examined in vitro. When added simultaneously with LPS at culture initiation, 10 to 100 microM cortisone increased the viability of normal peritoneal macrophages as determined by trypan blue exclusion. Prednisolone and corticosterone protected LPS-treated macrophages at even lower concentrations (0.1 to 1 microM); estradiol and testosterone failed to alter cell viability at any concentration tested. Protection was dependent on de novo synthesis because inclusion of 20 nM actinomycin C1 or 1 microM cycloheximide with 10 microM corticosterone during a 4-hr pretreatment period blocked induction of the protective effect. Murine macrophages were also protected by micromolar concentrations of zinc, cadmium, mercury, and manganese, but not by calcium or lead. As was obtained with corticosteroids, heavy metal-induced protection depended on de novo RNA and protein synthesis. Because all substances that protected against LPS are known inducers of metallothionein in somatic cells, peritoneal macrophages were assayed for the presence of this unique, cytoplasmic protein. Within 2 to 8 hr, 10 microM cadmium caused three to fivefold increases in the incorporation of 35S-cysteine and in the binding of 203Hg into the TCA-soluble fraction of cell lysates that was excluded on centrifugally accelerated Sephadex G-10 columns. These results suggest macrophages may be protected from LPS-mediated cytotoxicity through synthesis of a sulfhydryl-rich, metal-binding protein. Although its mechanism of action remains unknown, it is proposed that metallothionein may function homeostatically by altering intracellular concentrations of zinc or may play a regulatory role by facilitating transfer of heavy metals among metal-requiring apoproteins.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验