Suppr超能文献

由单层膜制成的脂质双层中的电压依赖性电容。

Voltage-dependent capacitance in lipid bilayers made from monolayers.

作者信息

Alvarez O, Latorre R

出版信息

Biophys J. 1978 Jan;21(1):1-17. doi: 10.1016/S0006-3495(78)85505-2.

Abstract

Electrocompression has been measured in lipid bilayers made by apposition of two monolayers. The capacitance C(V), as a function of membrane potential, V, was found to be well described by C(V) = C(O) [1 + alpha(V + delta psi)2] where C(O) is the capacitance at V = O, alpha is the fractional increase in capacitance per square volt, and delta psi is the surface potential difference. In lipid bilayers made from monolayers alpha has a value of 0.02 V-2, which is ca. 500-fold smaller than the value found in solvent containing membranes. In asymmetric bilayers made of one neutral and one negatively charged monolayer, delta psi values were found to be those expected from independent measurements of surface charge density. If the fractional increase in capacitance found here is a good approximation to that of biological membranes, nonlinear capacitative charge displacement derived from electrostriction is expected to be less than 1% of the total gating charge displacement found in squid axons.

摘要

通过两个单层膜并列形成的脂质双层膜中测量了电压缩。电容C(V)作为膜电位V的函数,发现可以很好地用C(V)=C(0)[1+α(V+Δψ)²]来描述,其中C(0)是V=0时的电容,α是每伏特电容的分数增加量,Δψ是表面电位差。在由单层膜制成的脂质双层膜中,α的值为0.02 V⁻²,这大约比在含溶剂膜中发现的值小500倍。在由一个中性单层膜和一个带负电的单层膜制成的不对称双层膜中,发现Δψ值是根据表面电荷密度的独立测量所预期的值。如果这里发现的电容分数增加量很好地近似于生物膜的增加量,那么由电致伸缩产生的非线性电容性电荷位移预计将小于鱿鱼轴突中发现的总门控电荷位移的1%。

相似文献

1
Voltage-dependent capacitance in lipid bilayers made from monolayers.
Biophys J. 1978 Jan;21(1):1-17. doi: 10.1016/S0006-3495(78)85505-2.
2
Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.
Biophys J. 1978 Jan;21(1):35-70. doi: 10.1016/S0006-3495(78)85507-6.
3
Voltage-dependent capacitance of human embryonic kidney cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041930. doi: 10.1103/PhysRevE.73.041930. Epub 2006 Apr 28.
5
7
The effect of surface charge density on valinomycin-K+ complex formation in model membranes.
Biochim Biophys Acta. 1979 Jun 13;554(1):23-38. doi: 10.1016/0005-2736(79)90003-8.
8
Interfacial photoreactions and chemical capacitance in lipid bilayers.
Proc Natl Acad Sci U S A. 1974 Apr;71(4):1564-8. doi: 10.1073/pnas.71.4.1564.
9
Inner voltage clamping. A method for studying interactions among hydrophobic ions in a lipid bilayer.
Biophys J. 1978 Jan;21(1):71-86. doi: 10.1016/S0006-3495(78)85508-8.
10
The electrical capacitance of phospholipid membranes.
Biophys J. 1969 Oct;9(10):1195-205. doi: 10.1016/S0006-3495(69)86445-3.

引用本文的文献

1
Negative memory capacitance and ionic filtering effects in asymmetric nanopores.
Nat Nanotechnol. 2025 Mar;20(3):421-431. doi: 10.1038/s41565-024-01829-5. Epub 2025 Jan 2.
2
Asymmetric Lipid Bilayers and Potassium Channels Embedded Therein in the Contact Bubble Bilayer.
Methods Mol Biol. 2024;2796:1-21. doi: 10.1007/978-1-0716-3818-7_1.
3
Electric Fields at the Lipid Membrane Interface.
Membranes (Basel). 2023 Nov 16;13(11):883. doi: 10.3390/membranes13110883.
5
Determining the Bending Rigidity of Free-Standing Planar Phospholipid Bilayers.
Membranes (Basel). 2023 Jan 19;13(2):129. doi: 10.3390/membranes13020129.
8
Dielectric Properties of Phosphatidylcholine Membranes and the Effect of Sugars.
Membranes (Basel). 2021 Oct 30;11(11):847. doi: 10.3390/membranes11110847.
9
Nonlinear material and ionic transport through membrane nanotubes.
Biochim Biophys Acta Biomembr. 2021 Oct 1;1863(10):183677. doi: 10.1016/j.bbamem.2021.183677. Epub 2021 Jun 9.
10
Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology.
Membranes (Basel). 2021 Apr 27;11(5):319. doi: 10.3390/membranes11050319.

本文引用的文献

1
The action of calcium on the electrical properties of squid axons.
J Physiol. 1957 Jul 11;137(2):218-44. doi: 10.1113/jphysiol.1957.sp005808.
2
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
3
The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons.
J Physiol. 1965 Oct;180(4):821-36. doi: 10.1113/jphysiol.1965.sp007733.
4
The effects of a direct current potential bias on the electrical properties of bimolecular lipid membranes.
Biochim Biophys Acta. 1968 Sep 17;163(2):226-33. doi: 10.1016/0005-2736(68)90101-6.
5
Thickness changes in lipid bilayer membranes.
Biochim Biophys Acta. 1970;196(2):354-7. doi: 10.1016/0005-2736(70)90023-4.
6
Surface charge and the conductance of phospholipid membranes.
Proc Natl Acad Sci U S A. 1970 Nov;67(3):1268-75. doi: 10.1073/pnas.67.3.1268.
7
Analysis of the potential-dependent changes in optical retardation in the squid giant axon.
J Physiol. 1971 Oct;218(1):205-37. doi: 10.1113/jphysiol.1971.sp009611.
8
Temperature-dependent structural changes in planar bilayer membranes: solvent "freeze-out".
Biochim Biophys Acta. 1974 Jul 12;356(1):8-16. doi: 10.1016/0005-2736(74)90289-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验