Suppr超能文献

由分散在角鲨烯中的单油酸甘油酯形成“无溶剂”黑色脂质双层膜。

Formation of "solvent-free" black lipid bilayer membranes from glyceryl monooleate dispersed in squalene.

作者信息

White S H

出版信息

Biophys J. 1978 Sep;23(3):337-47. doi: 10.1016/S0006-3495(78)85453-8.

Abstract

A simple technique for forming "black" lipid bilayer membranes containing negligible amounts of alkyl solvent is described. The membranes are formed by the method of Mueller et al (Circulation. 1962. 26:1167.) from glyceryl monooleate (GMO) dispersed in squalene. The squalene forms an annulus to satisfy the boundary conditions of the planar bilayer but does not appear to dissolve noticeably in the bilayer itself. The specific geometric capacitance (Cg) of the membranes at 20 degrees C formed by this technique is 0.7771 +/- 0.0048 muF/cm2. Theoretical estimates of Cg for solvent-free bilayers range from 0.75 to 0.81 muF/cm2. Alkane-free GMO bilayers formed from n-octadecane by the solvent freeze-out method of White (Biochim. Biophys. Acta. 1974. 356:8) have values of Cg = 0.7903 +/- 0.0013 muF/cm2 at 20.5 degrees C. The agreement between the various values of Cg strongly suggests that the bilayers are free of squalene. DC potentials applied to the bilayers have no detectable effect on the value of Cg, as expected for solvent-free films. The ability to form bilayers essentially free of the solvent used in the forming solution makes it possible to determine the area per molecule of the surface active lipid in the bilayer. The area per molecule of GMO at 20 degrees C is estimated to be 37.9 +/- 0.2 A2.

摘要

本文描述了一种形成含可忽略不计烷基溶剂量的“黑色”脂质双分子层膜的简单技术。这些膜是通过穆勒等人(《循环》。1962年。26:1167)的方法,由分散在角鲨烯中的甘油单油酸酯(GMO)形成的。角鲨烯形成一个环来满足平面双分子层的边界条件,但似乎不会明显溶解在双分子层本身中。通过该技术在20摄氏度下形成的膜的比几何电容(Cg)为0.7771±0.0048μF/cm²。无溶剂双分子层的Cg理论估计值在0.75至0.81μF/cm²之间。通过怀特(《生物化学与生物物理学报》。1974年。356:8)的溶剂冷冻法由正十八烷形成的无烷烃GMO双分子层在20.5摄氏度下的Cg值为0.7903±0.0013μF/cm²。各种Cg值之间的一致性强烈表明双分子层不含角鲨烯。如无溶剂膜所预期的那样,施加到双分子层的直流电位对Cg值没有可检测到的影响。形成基本不含形成溶液中所用溶剂的双分子层的能力使得确定双分子层中表面活性脂质的每分子面积成为可能。估计在20摄氏度下GMO的每分子面积为37.9±0.2 Ų。

相似文献

1
2
Photon correlation spectroscopy of bilayer lipid membranes.
Biophys J. 1983 Feb;41(2):197-210. doi: 10.1016/S0006-3495(83)84420-8.
3
Kinetics of carrier-mediated ion transport in two new types of solvent-free lipid bilayers.
Biophys J. 1982 Aug;39(2):141-50. doi: 10.1016/S0006-3495(82)84501-3.
4
Phase transitions in planar bilayer membranes.
Biophys J. 1975 Feb;15(2 Pt 1):95-117. doi: 10.1016/s0006-3495(75)85795-x.
5
Formation of planar bilayer membranes from lipid monolayers. A critique.
Biophys J. 1976 May;16(5):481-9. doi: 10.1016/S0006-3495(76)85703-7.
6
Artificial black membranes from bipolar lipids of thermophilic Archaebacteria.
Biophys J. 1982 Feb;37(2):563-6. doi: 10.1016/S0006-3495(82)84702-4.
7
Electrical capacity of black lipid films and of lipid bilayers made from monolayers.
Biochim Biophys Acta. 1975 Jul 3;394(3):323-34. doi: 10.1016/0005-2736(75)90287-4.
10
Planar bilayer membranes from pure lipids.
Biochim Biophys Acta. 1979 Nov 2;557(2):295-305. doi: 10.1016/0005-2736(79)90328-6.

引用本文的文献

1
The Role of Lipid Intrinsic Curvature in the Droplet Interface Bilayer.
Langmuir. 2024 Jun 4;40(22):11428-11435. doi: 10.1021/acs.langmuir.4c00270. Epub 2024 May 20.
2
Concentration-Dependent Effects of Curcumin on Membrane Permeability and Structure.
ACS Pharmacol Transl Sci. 2024 Apr 10;7(5):1546-1556. doi: 10.1021/acsptsci.4c00093. eCollection 2024 May 10.
3
Domain Size Regulation in Phospholipid Model Membranes Using Oil Molecules and Hybrid Lipids.
J Phys Chem B. 2022 Aug 11;126(31):5842-5854. doi: 10.1021/acs.jpcb.2c02862. Epub 2022 Jul 27.
4
Trans-Resveratrol Decreases Membrane Water Permeability: A Study of Cholesterol-Dependent Interactions.
J Membr Biol. 2022 Oct;255(4-5):575-590. doi: 10.1007/s00232-022-00250-0. Epub 2022 Jun 24.
5
Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology.
Membranes (Basel). 2021 Apr 27;11(5):319. doi: 10.3390/membranes11050319.
6
Forming and loading giant unilamellar vesicles with acoustic jetting.
Biomicrofluidics. 2020 Nov 19;14(6):064105. doi: 10.1063/5.0021742. eCollection 2020 Nov.
7
Letter to the Editor: Distanced Inspiration from the Career of Stephen H. White.
J Membr Biol. 2021 Feb;254(1):1-3. doi: 10.1007/s00232-020-00146-x. Epub 2020 Oct 24.
8
Interleaflet coupling of n-alkane incorporated bilayers.
Phys Chem Chem Phys. 2020 Mar 14;22(10):5418-5426. doi: 10.1039/c9cp06059f. Epub 2020 Jan 6.
9
The Main (Glyco) Phospholipid (MPL) of .
Int J Mol Sci. 2019 Oct 21;20(20):5217. doi: 10.3390/ijms20205217.

本文引用的文献

1
A study of lipid bilayer membrane stability using precise measurements of specific capacitance.
Biophys J. 1970 Dec;10(12):1127-48. doi: 10.1016/S0006-3495(70)86360-3.
2
Analysis of the torus surrounding planar lipid bilayer membranes.
Biophys J. 1972 Apr;12(4):432-45. doi: 10.1016/S0006-3495(72)86095-8.
3
Temperature-dependent structural changes in planar bilayer membranes: solvent "freeze-out".
Biochim Biophys Acta. 1974 Jul 12;356(1):8-16. doi: 10.1016/0005-2736(74)90289-2.
4
The surface charge and double layers of thin lipid films formed from neutral lipids.
Biochim Biophys Acta. 1973 Oct 25;323(3):343-50. doi: 10.1016/0005-2736(73)90180-6.
5
The molecular composition of some lipid bilayer membranes in aqueous solution.
J Membr Biol. 1972;10(1):11-30. doi: 10.1007/BF01867845.
6
Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.
Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561-6. doi: 10.1073/pnas.69.12.3561.
7
Capacitance, area, and thickness variations in thin lipid films.
Biochim Biophys Acta. 1973 Sep 27;323(1):7-22. doi: 10.1016/0005-2736(73)90428-8.
8
Formation of planar bilayer membranes from lipid monolayers. A critique.
Biophys J. 1976 May;16(5):481-9. doi: 10.1016/S0006-3495(76)85703-7.
9
High prescision capacitance bridge for studying lipid bilayer membranes.
Rev Sci Instrum. 1975 Nov;46(11):1462-6. doi: 10.1063/1.1134087.
10
Letter: Lenses and the compression of black lipid membranes by an electric field.
Biophys J. 1975 Jan;15(1):77-81. doi: 10.1016/S0006-3495(75)85793-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验