DeLisi C, Marchetti F
Cell Biophys. 1983 Dec;5(4):237-53. doi: 10.1007/BF02788623.
Cells generally chemotax along a direction in which their receptor occupancy gradient--whether spatial or temporal--is maximum. Occupancy differentials are, however, often so small as to be masked by thermal noise; i.e., by fluctuations inherent in the stochastic nature of ligand binding. Such fluctuations therefore impose a fundamental limit on the sensitivity of a cell's ability to detect a chemoattractant gradient. In order to pursue the implications of this limit, fluctuation theories have been developed. The theories assume that the signal is some function of the receptor occupancy gradient, allow an estimate of the standard deviation about the mean signal, and permit an evaluation of, among other things, the extent to which a receptor defect can impair an effective response. Previous theories have assumed an equilibrated ligand-receptor interaction. In this paper we introduce a generalized definition of a signal caused by a receptor occupancy gradient that allows us to develop a non-equilibrium theory of thermal noise. We show that previous formulations are a special case of the current development. More specifically, we find the following. Swimming cells subject to Brownian tumbling must generally average their signals over a very long time period to achieve a signal-to-noise ratio less than or equal to 1. Spatial gradient detection is possible with ligand-receptor equilibrium constants less than 10(3)M-1, but since such ligands are rare, theory predicts that tumbling cells will generally not detect gradients by measuring spatial occupancy differentials. These conclusions hold irrespective of whether chemical equilibrium is achieved. For crawling cells not subject to Brownian tumbling, a range of affinities exists in which spatial or temporal gradient detection is possible. In general a spatial mechanism is more efficient for low affinity ligands (dissociation times less than 0.3 s), whereas a temporal mechanism is more efficient for higher K. In this case the detection of gradients in slowly dissociating ligand will be facilitated if signal processing begins prior to chemical equilibration. An important new parameter is indicated by the theory. The definitions of a temporal gradient signal is based on estimating and comparing average occupancy over two time intervals displaced by a time t1. The theory predicts an optimal t1, of order milliseconds, that leads to the shortest minimum averaging time. For t1 values at and longer than the optimum, and for all averaging times exceeding some minimum, the cell will detect a temporal signal.(ABSTRACT TRUNCATED AT 400 WORDS)
细胞通常会沿着其受体占有率梯度(无论是空间上的还是时间上的)最大的方向进行趋化运动。然而,占有率差异往往非常小,以至于会被热噪声掩盖,即被配体结合的随机性质中固有的波动所掩盖。因此,这种波动对细胞检测趋化因子梯度的能力的敏感性施加了一个基本限制。为了探究这个限制的影响,人们已经发展了波动理论。这些理论假设信号是受体占有率梯度的某种函数,允许估计围绕平均信号的标准差,并允许评估除其他因素外受体缺陷会在多大程度上损害有效反应。先前的理论假设配体 - 受体相互作用处于平衡状态。在本文中,我们引入了由受体占有率梯度引起的信号的广义定义,这使我们能够发展一种热噪声的非平衡理论。我们表明先前的公式是当前发展的一个特殊情况。更具体地说,我们发现以下情况。受布朗运动翻滚影响的游动细胞通常必须在很长一段时间内对其信号进行平均,以实现小于或等于1的信噪比。当配体 - 受体平衡常数小于10³M⁻¹时,空间梯度检测是可能的,但由于此类配体很少见,理论预测翻滚细胞通常不会通过测量空间占有率差异来检测梯度。无论是否达到化学平衡,这些结论都成立。对于不受布朗运动翻滚影响的爬行细胞,存在一系列亲和力范围,在其中空间或时间梯度检测是可能的。一般来说,对于低亲和力配体(解离时间小于0.3秒),空间机制更有效,而对于较高的平衡常数,时间机制更有效。在这种情况下,如果在化学平衡之前开始信号处理,将有助于检测缓慢解离配体中的梯度。该理论指出了一个重要的新参数。时间梯度信号的定义基于估计和比较在由时间t1隔开的两个时间间隔内的平均占有率。该理论预测了一个约为毫秒级的最优t1,它会导致最短的最小平均时间。对于等于或长于最优值的t1值,以及对于所有超过某个最小值的平均时间,细胞将检测到一个时间信号。