Woodbury C P, Hagenbüchle O, von Hippel P H
J Biol Chem. 1980 Dec 10;255(23):11534-48.
It has been shown previously (Polisky, B., Green, P., Garfin, D. E., McCarthy, B. J., Goodman, H. M., and Boyer, H. W. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 3310-3314; Hsu, M., and Berg, P. (1978) Biochemistry 17, 131-138) that the cleavage sequence specificity of Eco RI endonuclease can be "relaxed" by various means. In this paper this phenomenon is explored in detail, in order to obtain further insight into the nature and selectivity of sequence recognition patterns between proteins and double-stranded nucleic acids. Using conditions of low ionic strength and alkaline pH, we have mapped the positions of potentially cleavable sites in the (completely sequenced) replicative form of the bacteriophage phi X174 genome, and have deduced their sequence. The time course of digestion of phi X174 DNA suggests that double-stranded sequences reading GGATTT, AAATTT, GAATTT, and GAATTA (only "top" strands, written 5' leads to 3', are shown) are cleaved readily under these conditions, while sequences reading CAATTN (N = A, T, G) resist attack. Cleavages at (at least) the more labile sites result in cohesive ends that are religatable. End group analysis of cleaved phi X174 DNA fragments indicates the presence of a 5'-terminal adenine residue on most of the fragments; some fragments may carry a 5'-terminal guanine residue, consistent with the cleavage site sequences suggested above. Addition of Mn2+ to cleavage reactions carried out at moderate salt concentrations and near-neutral pH induces the same pattern of cleavage seen at low ionic strength and alkaline pH. These results are combined with those from other studies, and are interpreted in terms of a model for the site-specific interaction of the Eco RI endonuclease with its substrate, considering both the effects of changes in DNA sequence and of environmental alterations. The resulting model is compared with data developed on similar grounds for Eco RI methylase (see Woodbury, C. P., Downey, R. L., and von Hippel, P. H. (1980) J. Biol. Chem. 255, 11526-11533), and attempts are made to define both common and differing molecular facets of the DNA recognition specificity of these companion (but genetically distinct) enzymes.
先前的研究已经表明(波利斯基,B.,格林,P.,加芬,D. E.,麦卡锡,B. J.,古德曼,H. M.,以及博耶,H. W.(1975年)《美国国家科学院院刊》72卷,3310 - 3314页;许,M.,以及伯格,P.(1978年)《生物化学》17卷,131 - 138页),通过各种方法可以“放宽”Eco RI核酸内切酶的切割序列特异性。在本文中,将对这一现象进行详细探究,以便进一步深入了解蛋白质与双链核酸之间序列识别模式的性质和选择性。利用低离子强度和碱性pH条件,我们已经绘制出噬菌体φX174基因组(已完全测序)复制形式中潜在可切割位点的位置,并推导了它们的序列。φX174 DNA的消化时间进程表明,在这些条件下,读取GGATTT、AAATTT、GAATTT和GAATTA(仅显示“顶部”链,从5'端到3'端书写)的双链序列很容易被切割,而读取CAATTN(N = A、T、G)的序列则能抵抗切割。在(至少)更不稳定的位点进行切割会产生可重新连接的粘性末端。对切割后的φX174 DNA片段进行末端基团分析表明,大多数片段上存在5'末端腺嘌呤残基;一些片段可能携带5'末端鸟嘌呤残基,这与上述切割位点序列一致。在中等盐浓度和近中性pH条件下进行的切割反应中添加Mn2 +会诱导出与低离子强度和碱性pH条件下相同的切割模式。这些结果与其他研究的结果相结合,并根据Eco RI核酸内切酶与其底物的位点特异性相互作用模型进行解释,同时考虑了DNA序列变化和环境改变的影响。将所得模型与基于类似依据为Eco RI甲基化酶建立的数据(见伍德伯里,C. P.,唐尼,R. L.,以及冯·希佩尔,P. H.(1980年)《生物化学杂志》255卷,11526 - 11533页)进行比较,并尝试确定这两种相伴(但基因不同)酶的DNA识别特异性的共同和不同分子层面。