Suppr超能文献

电融合组织的单位膜参数

Unit membrane parameters of electrically syncytial tissues.

作者信息

Levin D N

出版信息

Biophys J. 1981 Jul;35(1):147-65. doi: 10.1016/S0006-3495(81)84780-7.

Abstract

A change in the holding voltage, exposure to channel-blocking agents, and similar interventions will induce changes in the membrane properties of electrically syncytial tissues. The altered membrane characteristics will produce changes in the input resistance (RIN) and the phase angle (phi) of the complex admittance of the whole preparation. Exact geometry-independent formulas are derived that give the intervention-induced changes in the membrane capacitance and conductance in terms of the measured changes in RIN and phi. The formulas automatically account for the effects of extracellular resistance in tissues such as skeletal muscle fibers, cardiac Purkinje fibers, and small cardiac "aggregates." The size, shape, and resistance of the extracellular space may be arbitrary and need not be measured. The surface (invaginated) membranes, which face the bath (extracellular space), are assumed to be characterized by an RC circuit with specific capacity Cme (Cmi) and specific conductivity gme (gmi). It is assumed that the intracellular voltage gradient between the electrodes and the membranes is negligible or reliably calculable. The intervention is assumed to leave the geometry and resistivity of the extracellular space unchanged. Under these circumstances the intervention-induced changes in Cme, Cmi, gme, and gmi are determined exactly in terms of the corresponding changes in RIN and certain frequency domain integrals over phi. The technique is illustrated by synthetic data for RIN and phi generated by the "disk" model of a skeletal muscle fiber in which Cme and Cmi depend upon holding voltage. The corresponding voltage dependence of RIN and phi is successfully "inverted" to expose the underlying voltage dependence of Cme and Cmi. These computations suggest that the formulas for Cme and Cmi will be useful in realistic situations, since they are not too sensitive to experimental error in the data for RIN and phi. This method makes it possible to detect voltage-dependent capacity changes due to unit membrane processes (e.g., charge movement) as long as the intrinsic time constant of that process is very small (e.g., less than 1/30 ms). As a second example I consider a disk model that is exposed to increasing concentrations of a channel-blocking agent. The drug dependence of RIN and phi is used to calculate the drug dependence of the total membrane conductivity (the sum of gme and gmi, weighted by the areas of surface and invaginated membranes, respectively).

摘要

保持电压的变化、暴露于通道阻断剂以及类似的干预措施将诱导电合胞体组织的膜特性发生变化。改变后的膜特性将使整个标本的复导纳的输入电阻(RIN)和相角(phi)产生变化。推导出了精确的与几何形状无关的公式,这些公式根据RIN和phi的测量变化给出了干预引起的膜电容和电导的变化。这些公式自动考虑了细胞外电阻在诸如骨骼肌纤维、心脏浦肯野纤维和小的心脏“聚集体”等组织中的影响。细胞外空间的大小、形状和电阻可以是任意的,无需测量。面向浴液(细胞外空间)的表面(内陷)膜被假定具有一个具有特定电容Cme(Cmi)和特定电导率gme(gmi)的RC电路。假定电极与膜之间的细胞内电压梯度可忽略不计或可可靠计算。假定干预措施不会改变细胞外空间的几何形状和电阻率。在这些情况下,干预引起的Cme、Cmi、gme和gmi的变化可根据RIN的相应变化以及phi的某些频域积分精确确定。通过骨骼肌纤维“盘状”模型生成的RIN和phi的合成数据说明了该技术,其中Cme和Cmi取决于保持电压。成功地“反转”了RIN和phi相应的电压依赖性,以揭示Cme和Cmi潜在的电压依赖性。这些计算表明,Cme和Cmi的公式在实际情况中将是有用的,因为它们对RIN和phi数据中的实验误差不太敏感。只要该过程的固有时间常数非常小(例如,小于1/30毫秒),这种方法就能够检测由于单位膜过程(例如,电荷移动)引起的电压依赖性电容变化。作为第二个例子,我考虑一个暴露于浓度不断增加的通道阻断剂的盘状模型。利用RIN和phi的药物依赖性来计算总膜电导率(分别由表面膜和内陷膜面积加权的gme和gmi之和)的药物依赖性。

相似文献

1
Unit membrane parameters of electrically syncytial tissues.电融合组织的单位膜参数
Biophys J. 1981 Jul;35(1):147-65. doi: 10.1016/S0006-3495(81)84780-7.
2
Surface capacity of electrically syncytial tissues.电融合组织的表面容量
Biophys J. 1981 Jul;35(1):127-46. doi: 10.1016/S0006-3495(81)84779-0.

引用本文的文献

1
Surface capacity of electrically syncytial tissues.电融合组织的表面容量
Biophys J. 1981 Jul;35(1):127-46. doi: 10.1016/S0006-3495(81)84779-0.

本文引用的文献

2
Surface capacity of electrically syncytial tissues.电融合组织的表面容量
Biophys J. 1981 Jul;35(1):127-46. doi: 10.1016/S0006-3495(81)84779-0.
3
The kinetics of mechanical activation in frog muscle.青蛙肌肉中机械激活的动力学。
J Physiol. 1969 Sep;204(1):207-30. doi: 10.1113/jphysiol.1969.sp008909.
7
Charge movements in skeletal muscle.骨骼肌中的电荷移动。
Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):501-5. doi: 10.1098/rstb.1975.0026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验