De Wolf M J, Vitti P, Ambesi-Impiombato F S, Kohn L D
J Biol Chem. 1981 Dec 10;256(23):12287-96.
Bovine thyroid membranes possess both ADP ribosyltransferase and NAD glycohydrolase activities with the same Km values for NAD and the same pH optima. In intact membranes, the ADP ribosyltransferase is limited in its extent by the amount of available membrane acceptor which can be ADP-ribosylated; in membranes solubilized with lithium diiodosalicylate, an artificial acceptor, L-arginine methyl ester, can be substituted to eliminate this limitation. The product of the ADP ribosyltransferase is a mono-ADP-ribosylated acceptor whether the intact or solubilized membrane provides the enzyme activity and whether membrane or exogenous acceptor, L-arginine methyl ester, is utilized. The intact membranes and the solubilized preparation also have an enzyme activity which can release AMP from the mono-ADP-ribosylated acceptor whether formed by the action of the membrane ADP ribosyltransferase or the A promoter of cholera toxin. The NAD glycohydrolase activity appears to represent the half-reaction of the ADP ribosyltransferase, i.e. an activity measurable substituting water for a membrane acceptor or L-arginine methyl ester. Membranes from functional rat thyroid cells in culture, i.e. cells chronically stimulated by thyrotropin and unresponsive to further additions of thyrotropin, have low ADP-ribosylation but high NAD glycohydrolase activities. In contrast, membranes from nonfunctional rat thyroid cells, i.e. cells unresponsive to thyrotropin, have high ADP-ribosylation and low NAD glycohydrolase activities. NAD hydrolysis by the NAD glycohydrolase activity cannot account for the low ADP-ribosylation activity in membranes from the functioning cells, and its low level of ADP-ribosylation can be eliminated by solubilizing the membranes and substituting an artificial acceptor, L-arginine methyl ester. The ADP ribosyltransferase activity of rat thyroid cell membrane preparations can be enhanced by thyrotropin in a dose-dependent manner but not by insulin, glucagon, hydrocortisone, adrenocorticotropin, or its glycoprotein hormone analog, human chorionic gonadotropin. It is thus suggested (i) that, in analogy to cholera toxin, thyrotropin-stimulated ADP-ribosylation may be important in the regulation of the adenylate cyclase response and (ii) that the level of membrane acceptor available for ADP-ribosylation may relate both to a stable "'activated" state of the adenylate cyclase system in cells chronically stimulated with thyrotropin and/or to a desensitized state with regard to a failure of more thyrotropin to elicit additional functional responses.
牛甲状腺膜同时具有ADP核糖基转移酶和NAD糖水解酶活性,对NAD具有相同的Km值和相同的最适pH值。在完整的膜中,ADP核糖基转移酶的作用程度受到可被ADP核糖基化的膜受体数量的限制;在用二碘水杨酸锂溶解的膜中,可以用人工受体L-精氨酸甲酯替代,以消除这种限制。无论完整膜还是溶解膜提供酶活性,也无论利用的是膜受体还是外源性受体L-精氨酸甲酯,ADP核糖基转移酶的产物都是单ADP核糖基化受体。完整膜和溶解制剂还具有一种酶活性,该活性可以从单ADP核糖基化受体中释放出AMP,无论该受体是由膜ADP核糖基转移酶的作用形成的还是由霍乱毒素的A亚基形成的。NAD糖水解酶活性似乎代表了ADP核糖基转移酶的半反应,即一种可通过用水替代膜受体或L-精氨酸甲酯来测量的活性。培养的功能性大鼠甲状腺细胞(即长期受促甲状腺激素刺激且对进一步添加促甲状腺激素无反应的细胞)的膜具有低ADP核糖基化活性但高NAD糖水解酶活性。相反,非功能性大鼠甲状腺细胞(即对促甲状腺激素无反应的细胞)的膜具有高ADP核糖基化活性和低NAD糖水解酶活性。功能性细胞的膜中低ADP核糖基化活性不能用NAD糖水解酶活性对NAD的水解来解释,通过溶解膜并用人工受体L-精氨酸甲酯替代可以消除其低水平的ADP核糖基化。大鼠甲状腺细胞膜制剂的ADP核糖基转移酶活性可以被促甲状腺激素以剂量依赖性方式增强,但不能被胰岛素、胰高血糖素、氢化可的松、促肾上腺皮质激素或其糖蛋白激素类似物人绒毛膜促性腺激素增强。因此,有人提出:(i)与霍乱毒素类似,促甲状腺激素刺激的ADP核糖基化可能在腺苷酸环化酶反应的调节中起重要作用;(ii)可用于ADP核糖基化的膜受体水平可能与长期受促甲状腺激素刺激的细胞中腺苷酸环化酶系统的稳定“活化”状态有关,和/或与更多促甲状腺激素未能引发额外功能反应的脱敏状态有关。