Suppr超能文献

在不同还原形式的黄嘌呤氧化酶中[33S]硫与钼(V)的偶联

Coupling of [33S]sulphur to molybdenum(V) in different reduced forms of xanthine oxidase.

作者信息

Malthouse J P, George G N, Lowe D J, Bray R C

出版信息

Biochem J. 1981 Dec 1;199(3):629-37. doi: 10.1042/bj1990629.

Abstract

Different reduced forms of xanthine oxidase, labelled specifically in the cyanide-labile site with 33S, were prepared and examined by electron paramagnetic resonance. Coupling of this isotope to molybdenum(V) was quantified with the help of computer simulations and found to differ markedly from one reduced form to another. The xanthine Very Rapid signal shows strong, highly anisotropic, coupling with A(33S)av. 1.27 mT. For this signal, axes of the g- and A(33S)-tensors are rotated relative to one another. One axis of the A-tensor is in the plane of gxx ang gyy, but rotated by 40 degrees relative to the gxx axis, whereas the direction of weakest coupling to sulphur deviates by 10 degrees from the gzz axis. In contrast with this signal, only rather weaker coupling was observed in different types of Rapid signal [A(33S)av. 0.3--0.4 mT], and in the Inhibited signal coupling was weaker still [A(33S)av. 0.1--0.2 mT]. Clearly, there must be substantial differences in the structures of the molybdenum centre in the different signal-giving species, with the sulphur atom perhaps in an equatorial type of ligand position in the Very Rapid species but in a more axial one in the other species. Structures are discussed in relation to the mechanism of action of the enzyme and the nature of the proton-accepting group that participates in turnover.

摘要

制备了用³³S特异性标记在氰化物敏感位点的不同还原形式的黄嘌呤氧化酶,并通过电子顺磁共振进行检测。借助计算机模拟对该同位素与钼(V)的耦合进行了定量,发现不同还原形式之间存在显著差异。黄嘌呤的“非常快速”信号显示出与A(³³S)av. 1.27 mT的强且高度各向异性的耦合。对于该信号,g张量和A(³³S)张量轴相互旋转。A张量的一个轴在gxx和gyy平面内,但相对于gxx轴旋转了40度,而与硫的最弱耦合方向偏离gzz轴10度。与该信号相反,在不同类型的“快速”信号中仅观察到相当弱的耦合[A(³³S)av. 0.3 - 0.4 mT]),而在“受抑制”信号中耦合更弱[A(³³S)av. 0.1 - 0.2 mT]。显然,不同信号产生物种中钼中心的结构一定存在实质性差异,硫原子在“非常快速”物种中可能处于赤道型配体位置,而在其他物种中处于更轴向的位置。结合酶的作用机制以及参与周转的质子接受基团的性质对结构进行了讨论。

相似文献

1
Coupling of [33S]sulphur to molybdenum(V) in different reduced forms of xanthine oxidase.
Biochem J. 1981 Dec 1;199(3):629-37. doi: 10.1042/bj1990629.

引用本文的文献

1
In vitro sulfuration of Rhodobacter capsulatus formate dehydrogenase.
J Biol Chem. 2025 Apr 15;301(6):108511. doi: 10.1016/j.jbc.2025.108511.
2
Xanthine Oxidase-A Personal History.
Molecules. 2023 Feb 17;28(4):1921. doi: 10.3390/molecules28041921.
3
Molybdenum and Tungsten Cofactors and the Reactions They Catalyze.
Met Ions Life Sci. 2020 Mar 23;20. doi: 10.1515/9783110589757-015.
4
Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism.
Redox Rep. 2017 Jan;22(1):17-25. doi: 10.1080/13510002.2016.1206175. Epub 2016 Aug 9.
5
Electronic structure contributions to reactivity in xanthine oxidase family enzymes.
J Biol Inorg Chem. 2015 Mar;20(2):183-94. doi: 10.1007/s00775-014-1212-8. Epub 2014 Nov 26.
7
Multifrequency cw-EPR investigation of the catalytic molybdenum cofactor of polysulfide reductase from Wolinella succinogenes.
J Biol Inorg Chem. 2003 Apr;8(4):419-26. doi: 10.1007/s00775-002-0432-5. Epub 2003 Jan 17.
8
Formamide as a substrate of xanthine oxidase.
Biochem J. 1984 May 15;220(1):235-42. doi: 10.1042/bj2200235.

本文引用的文献

5
The reactions and the structures of molybdenum centers in enzymes.
Adv Enzymol Relat Areas Mol Biol. 1980;51:107-65. doi: 10.1002/9780470122969.ch3.
8
The mechanism of action of xanthine oxidase.
J Biol Chem. 1974 Jul 25;249(14):4363-82.
9
Observation of 17O effects on MoV EPR spectra in sulfite oxidase, xanthine dehydrogenase, and MoO(SC6H5)4-.
Biochem Biophys Res Commun. 1979 Nov 28;91(2):434-9. doi: 10.1016/0006-291x(79)91540-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验