Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA.
Inorg Chem. 2011 Nov 7;50(21):10919-28. doi: 10.1021/ic201477n. Epub 2011 Oct 5.
A detailed electron paramagnetic resonance (EPR) and computational study of a key paramagnetic form of xanthine oxidase (XO) has been performed and serves as a basis for developing a valence-bond description of C-H activation and transition-state (TS) stabilization along the reaction coordinate with aldehyde substrates. EPR spectra of aldehyde-inhibited XO have been analyzed in order to provide information regarding the relationship between the g, (95,97)Mo hyperfine (A(Mo)), and (13)C hyperfine (A(C)) tensors. Analysis of the EPR spectra has allowed for greater insight into the electronic origin of key delocalizations within the Mo-O(eq)-C fragment and how these contribute to C-H bond activation/cleavage and TS stabilization. A natural bond orbital analysis of the enzyme reaction coordinate with aldehyde substrates shows that both Mo═S π → C-H σ* (ΔE = 24.3 kcal mol(-1)) and C-H σ → Mo═S π* (ΔE = 20.0 kcal mol(-1)) back-donation are important in activating the substrate C-H bond for cleavage. Additional contributions to C-H activation derive from O(eq) lp → C-H σ* (lp = lone pair; ΔE = 8.2 kcal mol(-1)) and S lp → C-H σ* (ΔE = 13.2 kcal mol(-1)) stabilizing interactions. The O(eq)-donor ligand that derives from water is part of the Mo-O(eq)-C fragment probed in the EPR spectra of inhibited XO, and the observation of O(eq) lp → C-H σ* back-donation indicates a key role for O(eq) in activating the substrate C-H bond for cleavage. We also show that the O(eq) donor plays an even more important role in TS stabilization. We find that O(eq) → Mo + C charge transfer dominantly contributes to stabilization of the TS (ΔE = 89.5 kcal mol(-1)) and the Mo-O(eq)-C delocalization pathway reduces strong electronic repulsions that contribute to the classical TS energy barrier. The Mo-O(eq)-C delocalization at the TS allows for the TS to be described in valence-bond terms as a resonance hybrid of the reactant (R) and product (P) valence-bond wave functions.
已对黄嘌呤氧化酶(XO)的一种关键顺磁形式进行了详细的电子顺磁共振(EPR)和计算研究,为开发与醛底物沿反应坐标进行 C-H 活化和过渡态(TS)稳定的价键描述奠定了基础。已分析了醛抑制的 XO 的 EPR 谱,以便提供有关 g、(95、97)Mo 超精细(A(Mo))和(13)C 超精细(A(C))张量之间关系的信息。EPR 谱的分析使我们能够更深入地了解 Mo-O(eq)-C 片段内关键离域的电子起源,以及这些离域如何有助于 C-H 键的活化/断裂和 TS 的稳定。与醛底物的酶反应坐标的自然键轨道分析表明,Mo═S π→C-H σ*(ΔE = 24.3 kcal mol(-1)) 和 C-H σ→Mo═S π*(ΔE = 20.0 kcal mol(-1)) 反向供电子对于激活底物 C-H 键以进行断裂都很重要。C-H 活化的其他贡献来自 O(eq)lp→C-H σ*(lp = 孤对电子;ΔE = 8.2 kcal mol(-1)) 和 S lp→C-H σ*(ΔE = 13.2 kcal mol(-1)) 稳定相互作用。来自水的 O(eq)给体配体是 EPR 光谱中抑制的 XO 探测的 Mo-O(eq)-C 片段的一部分,观察到 O(eq)lp→C-H σ*反向供电子表明 O(eq)在激活底物 C-H 键以进行断裂方面起着关键作用。我们还表明,O(eq)供体在 TS 稳定中起着更为重要的作用。我们发现 O(eq)→Mo+C 电荷转移主要有助于 TS 的稳定(ΔE = 89.5 kcal mol(-1)),并且 Mo-O(eq)-C 离域途径降低了有助于经典 TS 能垒的强电子排斥。TS 处的 Mo-O(eq)-C 离域允许将 TS 用价键术语描述为反应物(R)和产物(P)价键波函数的共振杂化。