Läuger P
Biophys Chem. 1982 May;15(2):89-100. doi: 10.1016/0301-4622(82)80021-5.
A method, based on rate theory, is described by which transport rates in ion channels can be calculated using only microscopic parameters, such as atomic coordinates, force constants and intermolecular energy parameters. The channel is treated as a system of elastically bound ligands interacting with the ion by coulombic and Lennard-Jones forces. Jump frequencies of the ion are obtained from the potential mean force which represents a thermal average over the different configurations of the ligand system. The method is illustrated by application to a special channel model, helical arrangement of dipolar ligands, which can be tilted toward the channel axis against harmonic restoring force. The jump frequency is found to be a non-monotonous function of ion radius. Furthermore, the ion specificity of the channel strongly depends on whether the ligand system is 'hard' or 'soft', i.e., on the extent to which the interaction with the ion can lead to a reorientation of the ligand groups.
本文描述了一种基于速率理论的方法,利用该方法仅通过微观参数(如原子坐标、力常数和分子间能量参数)就可以计算离子通道中的转运速率。该通道被视为一个由弹性结合的配体组成的系统,这些配体通过库仑力和 Lennard-Jones 力与离子相互作用。离子的跳跃频率由势能平均力得出,该势能平均力代表了配体系统不同构型的热平均值。通过将该方法应用于一个特殊的通道模型——偶极配体的螺旋排列,该模型中偶极配体可克服简谐回复力向通道轴倾斜,对该方法进行了说明。研究发现跳跃频率是离子半径的非单调函数。此外,通道的离子特异性很大程度上取决于配体系统是“硬”还是“软”,即取决于与离子的相互作用能使配体基团重新定向的程度。