Suppr超能文献

通过浮力沉降法测定的干湿细菌孢子密度。

Wet and dry bacterial spore densities determined by buoyant sedimentation.

作者信息

Tisa L S, Koshikawa T, Gerhardt P

出版信息

Appl Environ Microbiol. 1982 Jun;43(6):1307-10. doi: 10.1128/aem.43.6.1307-1310.1982.

Abstract

The wet densities of various types of dormant bacterial spores and reference particles were determined by centrifugal buoyant sedimentation in density gradient solutions of three commercial media of high chemical density. With Metrizamide or Renografin, the wet density values for the spores and permeable Sephadex beads were higher than those obtained by a reference direct mass method, and some spore populations were separated into several density bands. With Percoll, all of the wet density values were about the same as those obtained by the direct mass method, and only single density bands resulted. The differences were due to the partial permeation of Metrizamide and Renografin, but not Percoll, into the spores and the permeable Sephadex beads. Consequently, the wet density of the entire spore was accurately represented only by the values obtained with the Percoll gradient and the direct mass method. The dry densities of the spores and particles were determined by gravity buoyant sedimentation in a gradient of two organic solvents, one of high and the other of low chemical density. All of the dry density values obtained by this method were about the same as those obtained by the direct mass method.

摘要

通过在三种化学密度高的商业介质的密度梯度溶液中进行离心浮力沉降,测定了各种类型的休眠细菌孢子和参比颗粒的湿密度。使用甲泛葡胺或泛影葡胺时,孢子和可渗透的葡聚糖凝胶珠的湿密度值高于通过参比直接质量法获得的值,并且一些孢子群体被分离成几个密度带。使用聚蔗糖时,所有湿密度值与通过直接质量法获得的值大致相同,并且仅产生单一密度带。差异是由于甲泛葡胺和泛影葡胺,但不是聚蔗糖,部分渗透到孢子和可渗透的葡聚糖凝胶珠中。因此,只有通过聚蔗糖梯度和直接质量法获得的值才能准确表示整个孢子的湿密度。通过在两种有机溶剂的梯度中进行重力浮力沉降来测定孢子和颗粒的干密度,其中一种有机溶剂的化学密度高,另一种有机溶剂的化学密度低。通过该方法获得的所有干密度值与通过直接质量法获得的值大致相同。

相似文献

1
Wet and dry bacterial spore densities determined by buoyant sedimentation.
Appl Environ Microbiol. 1982 Jun;43(6):1307-10. doi: 10.1128/aem.43.6.1307-1310.1982.
2
Wet and dry density of Bacillus anthracis and other Bacillus species.
J Appl Microbiol. 2008 Jul;105(1):68-77. doi: 10.1111/j.1365-2672.2008.03758.x. Epub 2008 Feb 20.
3
Protoplast water content of bacterial spores determined by buoyant density sedimentation.
J Bacteriol. 1985 Aug;163(2):735-7. doi: 10.1128/jb.163.2.735-737.1985.
4
Effects of spore purity on the wet heat resistance of Clostridium perfringens, Bacillus cereus and Bacillus subtilis spores.
Food Res Int. 2024 Feb;177:113904. doi: 10.1016/j.foodres.2023.113904. Epub 2023 Dec 22.
8
Buoyant density and sedimentation dynamics of HIV-1 in two density-gradient media for semen processing.
Fertil Steril. 2008 Nov;90(5):1983-7. doi: 10.1016/j.fertnstert.2007.09.025. Epub 2007 Dec 31.
9
Comparative study of eosinophil purification on Nycodenz, Metrizamide and Percoll density gradients.
Eur J Haematol. 1987 Aug;39(2):148-53. doi: 10.1111/j.1600-0609.1987.tb00745.x.
10
PHYSICAL SURFACE FEATURES AND CHEMICAL DENSITY OF DRY BACTERIAL SPORES.
J Bacteriol. 1963 Nov;86(5):1030-6. doi: 10.1128/jb.86.5.1030-1036.1963.

引用本文的文献

1
Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology.
Folia Microbiol (Praha). 2019 May;64(3):321-360. doi: 10.1007/s12223-018-0658-4. Epub 2018 Nov 16.
2
Effect of Humidity on Sporicidal Activity of Iodine Vapor on Bacillus thuringiensis.
Curr Microbiol. 2018 Feb;75(2):237-246. doi: 10.1007/s00284-017-1371-2. Epub 2017 Nov 2.
3
Requirements for the Development of Bacillus Anthracis Spore Reference Materials Used to Test Detection Systems.
J Res Natl Inst Stand Technol. 2006 Jun 1;111(3):205-17. doi: 10.6028/jres.111.017. Print 2006 May-Jun.
4
Water and Small-Molecule Permeation of Dormant Bacillus subtilis Spores.
J Bacteriol. 2015 Oct 19;198(1):168-77. doi: 10.1128/JB.00435-15. Print 2016 Jan 1.
5
Quantitative X-ray phase contrast waveguide imaging of bacterial endospores.
J Appl Crystallogr. 2015 Mar 24;48(Pt 2):464-476. doi: 10.1107/S1600576715003593. eCollection 2015 Apr 1.
6
Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells.
PLoS One. 2013 Jul 2;8(7):e67590. doi: 10.1371/journal.pone.0067590. Print 2013.
7
Negative dielectrophoretic capture of bacterial spores in food matrices.
Biomicrofluidics. 2010 Aug 17;4(3):034107. doi: 10.1063/1.3479998.
10
Influence of glutamate on growth, sporulation, and spore properties of Bacillus cereus ATCC 14579 in defined medium.
Appl Environ Microbiol. 2005 Jun;71(6):3248-54. doi: 10.1128/AEM.71.6.3248-3254.2005.

本文引用的文献

1
PHYSICAL SURFACE FEATURES AND CHEMICAL DENSITY OF DRY BACTERIAL SPORES.
J Bacteriol. 1963 Nov;86(5):1030-6. doi: 10.1128/jb.86.5.1030-1036.1963.
2
Permeability of bacterial spores. IV. Water content, uptake, and distribution.
J Bacteriol. 1962 May;83(5):960-7. doi: 10.1128/jb.83.5.960-967.1962.
4
Photometric immersion refractometry of bacterial spores.
J Bacteriol. 1982 May;150(2):643-8. doi: 10.1128/jb.150.2.643-648.1982.
5
Variation in Escherichia coli buoyant density measured in Percoll gradients.
J Bacteriol. 1981 Oct;148(1):58-63. doi: 10.1128/jb.148.1.58-63.1981.
6
Symposium on bacterial spores: IX. Biophysical analysis of the spore.
J Appl Bacteriol. 1970 Mar;33(1):103-29. doi: 10.1111/j.1365-2672.1970.tb05237.x.
7
Reconstitution of bacterial spore coat layers in vitro.
J Bacteriol. 1971 Oct;108(1):571-8. doi: 10.1128/jb.108.1.571-578.1971.
8
Dipicolinic acid-less mutants of Bacillus cereus.
J Bacteriol. 1967 Dec;94(6):2075-6. doi: 10.1128/jb.94.6.2075-2076.1967.
10
The use of density gradient centrifugation for the separation of germinated from nongerminated spores.
J Appl Bacteriol. 1972 Jun;35(2):345-9. doi: 10.1111/j.1365-2672.1972.tb03706.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验