Suppr超能文献

Receptor mediated endocytosis of hemoglobin-haptoglobin, galactosylated serum albumin and polymeric IgA by the liver.

作者信息

Limet J N, Quintart J, Otte-Slachmuylder C, Schneider Y J

出版信息

Acta Biol Med Ger. 1982;41(1):113-24.

PMID:6287771
Abstract

Labelled hemoglobin-haptoglobin (ham-hap), galactosylated serum albumin (gal-SA) and polymeric immunoglobulin A (p IgA) were injected intravenously to rats or mice. The labels disappeared from the plasma with a half-time of about 5 min and were almost entirely found associated with the liver where degradation products progressively appear. The uptake of hem-hap and gal-SA are partially saturable as a function of the plasmatic concentration and the uptake of gal-SA can be completely inhibited by the simultaneous injection of asialofetuin. About 45 min after injection to rats, labelled material appears in the bile in amounts corresponding to 3.9% of the injected dose (hem-hap), 2.8% (gal-SA) and 60.1% (p IgA). The molecular weight of the labelled material transferred into the bile has been characterized: it consists almost entirely of intact IgA and for about 60% of intact hem-hap and gal-SA. Cell fractionation experiments indicate that 4 min after injection, the label is associated with components which equilibrate around a density of 1.13 g/cm3 and which dissociate from marker enzymes of Golgi complex, plasma membrane and lysosomes. Longer times after injection (from 20 min for hem-hap and gal-SA to 1 h for p IgA) labelled material appears, within lysosomes. To explain all these data, we suggest that after binding to plasma membrane receptors, the ligands are rapidly interiorized into pinocytic vesicles which fuse with lysosomes. Most of the hem-hap and gal-SA molecules but only part of p IgA would be released and subsequently digested; these vesicles would dissociate from lysosomes and fuse with the biliary membrane where the molecules still bound to the membrane of the vesicles would be detached and excreted into the bile.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验