Vicker M G, Schill W, Drescher K
J Cell Biol. 1984 Jun;98(6):2204-14. doi: 10.1083/jcb.98.6.2204.
Myxamoebae of the morphogenetic cellular slime mold Dictyostelium discoideum are thought to be able to accurately read and respond to directional information in spatial gradients of cyclic AMP. We examined the spatial and temporal mechanisms proposed for chemotaxis by comparing the behavior of spreading or evenly distributed cell populations after exposure to well-defined spatial gradients. The effects of gradient generation on cells were avoided by using predeveloped gradients. Qualitatively different responses were obtained using (a) isotropic, (b) static spatial, or (c) temporal (impulse) gradients in a simple chamber of penetrable micropore filters. We simulated models of chemotaxis and chemokinesis to aid our interpretations. The attractive and locomotory responses of populations were maximally stimulated by 0.05 microM cyclic AMP, provided that cellular phosphodiesterase was inhibited. But a single impulse of cyclic AMP during gradient development caused a greater and qualitatively different attraction. Attraction in spatial gradients was only transient, in that populations eventually developed a random distribution when confined to a narrow territory. Populations never accumulated nor lost their random distribution even in extremely steep spatial gradients. Attraction in spatial gradients was inducible only in spreading populations, not randomly distributed ones. Thus, spatial gradients effect biased-random locomotion: i.e., chemokinesis without adaptation. Cells cannot read gradients; the reaction of the cells is stochastic. Spatial gradients do not cause chemotaxis, which probably requires a sharp stimulant concentration increase (a temporal gradient) as a pulse or impulse. The results also bear on concepts of how embryonic cells might be able to decipher the positional information in a morphogen spatial gradient during development.
形态发生性细胞黏菌盘基网柄菌的变形虫被认为能够准确读取并响应环磷酸腺苷空间梯度中的方向信息。我们通过比较暴露于明确空间梯度后扩散或均匀分布的细胞群体的行为,研究了提出的趋化性的空间和时间机制。通过使用预先形成的梯度避免了梯度产生对细胞的影响。在一个由可渗透微孔过滤器组成的简单小室中,使用(a)各向同性、(b)静态空间或(c)时间(脉冲)梯度获得了定性不同的反应。我们模拟了趋化性和趋化运动的模型以辅助我们的解释。群体的吸引和运动反应在细胞磷酸二酯酶被抑制的情况下,受到0.05微摩尔环磷酸腺苷的最大刺激。但是在梯度形成过程中环磷酸腺苷的单个脉冲会引起更大且定性不同的吸引力。空间梯度中的吸引力只是短暂的,因为群体在局限于狭窄区域时最终会形成随机分布。即使在极其陡峭的空间梯度中,群体也从未积累或失去其随机分布。空间梯度中的吸引力仅在扩散群体中可诱导,而在随机分布的群体中则不然。因此,空间梯度影响有偏随机运动:即无适应性的趋化运动。细胞无法读取梯度;细胞的反应是随机的。空间梯度不会引起趋化性,趋化性可能需要作为脉冲或冲动的急剧刺激物浓度增加(时间梯度)。这些结果也与胚胎细胞在发育过程中如何能够解读形态发生素空间梯度中的位置信息的概念相关。