Novick P, Schekman R
J Cell Biol. 1983 Feb;96(2):541-7. doi: 10.1083/jcb.96.2.541.
The transport of newly synthesized proteins to the yeast cell surface has been analyzed by a modification of the technique developed by Kaplan et al. (Kaplan, G., C. Unkeless, and Z.A. Cohn, 1979, Proc. Natl. Acad. Sci. USA, 76:3824-3828). Cells metabolically labeled with (35)SO(4)(2-) are treated with trinitrobenzenesulfonic acid (TNBS) at 0 degrees C under conditions where cell-surface proteins are tagged with trinitrophenol (TNP) but cytoplasmic proteins are not. After fractionation of cells into cell wall, membrane and cytoplasmic samples, and solubilization with SDS, the tagged proteins are immunoprecipitated with anti-TNP antibody and fixed staphylococcus aureus cells. Analysis of the precipitates by SDS gel electrophoresis and fluorography reveals four major protein species in the cell wall (S(1)-S(4)), seven species in the membrane fraction (M(1)-M(7)), and no tagged proteins in the cytoplasmic fraction. Temperature-sensitive mutants defective in secretion of invertase and acid phosphatase (sec mutants; Novick, P., C. Field, and R. Schekman, 1980, Cell, 21:204-215) are also defective in transport of the 11 major cell surface proteins at the nonpermissive temperature (37 degrees C). Export of accumulated proteins is restored in an energy- dependent fashion when secl cells are returned to a permissive temperature (24 degrees C). In wild-type cells the transit time for different surface proteins varies from less than 8 min to about 30 min. The asynchrony is developed at an early stage in the secretory pathway. All of the major cell wall proteins and many of the externally exposed plasma membrane proteins bind to concanavalin A. Inhibition of asparagine-linked glycosylation with tunicamycin does not prevent transport of several surface proteins.
通过对卡普兰等人(卡普兰,G.,C. 昂克利斯,和 Z.A. 科恩,1979 年,《美国国家科学院院刊》,76:3824 - 3828)所开发技术的改进,对新合成蛋白质向酵母细胞表面的转运进行了分析。用(35)SO(4)(2-)进行代谢标记的细胞在 0 摄氏度下用三硝基苯磺酸(TNBS)处理,此时细胞表面蛋白被三硝基苯酚(TNP)标记,而细胞质蛋白未被标记。将细胞分离成细胞壁、膜和细胞质样品,并用 SDS 溶解后,用抗 TNP 抗体和固定的金黄色葡萄球菌细胞对标记蛋白进行免疫沉淀。通过 SDS 凝胶电泳和荧光自显影对沉淀物进行分析,结果显示细胞壁中有四种主要蛋白质(S(1)-S(4)),膜部分有七种(M(1)-M(7)),而细胞质部分没有标记蛋白。在非允许温度(37 摄氏度)下,蔗糖酶和酸性磷酸酶分泌缺陷的温度敏感突变体(sec 突变体;诺维克,P.,C. 菲尔德,和 R. 谢克曼,1980 年,《细胞》,21:204 - 215)在 11 种主要细胞表面蛋白的转运方面也存在缺陷。当 sec1 细胞恢复到允许温度(24 摄氏度)时,积累蛋白质的输出以能量依赖的方式恢复。在野生型细胞中,不同表面蛋白的转运时间从不到 8 分钟到约 30 分钟不等。这种不同步在分泌途径的早期阶段就已出现。所有主要的细胞壁蛋白和许多细胞外暴露的质膜蛋白都能与伴刀豆球蛋白 A 结合。用衣霉素抑制天冬酰胺连接的糖基化并不妨碍几种表面蛋白的转运。