Suppr超能文献

使用误差度量的场景分割算法开发

Scene-segmentation algorithm development using error measures.

作者信息

Yasnoff W A, Bacus J W

出版信息

Anal Quant Cytol. 1984 Mar;6(1):45-58.

PMID:6375495
Abstract

Development of scene-segmentation algorithms has generally been an ad hoc process. This paper presents a systematic technique for developing these algorithms using error-measure minimization. If scene segmentation is regarded as a problem of pixel classification whereby each pixel of a scene is assigned to a particular object class, development of a scene-segmentation algorithm becomes primarily a process of feature selection. In this study, four methods of feature selection were used to develop segmentation techniques for cervical cytology images: (1) random selection, (2) manual selection (best features in the subjective judgment of the investigator), (3) eigenvector selection (ranking features according to the largest contribution to each eigenvector of the feature covariance matrix) and (4) selection using the scene-segmentation error measure A2. Four features were selected by each method from a universe of 35 features consisting of gray level, color, texture and special pixel neighborhood features in 40 cervical cytology images . Evaluation of the results was done with a composite of the scene-segmentation error measure A2, which depends on the percentage of scenes with measurable error, the agreement of pixel class proportions, the agreement of number of objects for each pixel class and the distance of each misclassified pixel to the nearest pixel of the misclassified class. Results indicate that random and eigenvector feature selection were the poorest methods, manual feature selection somewhat better and error-measure feature selection best. The error-measure feature selection method provides a useful, systematic method of developing and evaluating scene-segmentation algorithms.

摘要

场景分割算法的开发通常是一个临时的过程。本文提出了一种使用误差度量最小化来开发这些算法的系统技术。如果将场景分割视为一个像素分类问题,即场景中的每个像素被分配到特定的对象类别,那么场景分割算法的开发就主要变成了一个特征选择的过程。在本研究中,使用了四种特征选择方法来开发宫颈细胞学图像的分割技术:(1)随机选择,(2)手动选择(研究者主观判断中的最佳特征),(3)特征向量选择(根据特征协方差矩阵的每个特征向量的最大贡献对特征进行排序)以及(4)使用场景分割误差度量A2进行选择。从由40幅宫颈细胞学图像中的灰度、颜色、纹理和特殊像素邻域特征组成的35个特征总体中,每种方法选择了四个特征。使用场景分割误差度量A2的综合指标对结果进行评估,该指标取决于具有可测量误差的场景的百分比、像素类别比例的一致性、每个像素类别的对象数量的一致性以及每个误分类像素到误分类类别的最近像素的距离。结果表明,随机和特征向量特征选择是最差的方法,手动特征选择稍好一些,而误差度量特征选择最好。误差度量特征选择方法为开发和评估场景分割算法提供了一种有用的系统方法。

相似文献

3
Selecting discrete and continuous features based on neighborhood decision error minimization.基于邻域决策误差最小化选择离散和连续特征。
IEEE Trans Syst Man Cybern B Cybern. 2010 Feb;40(1):137-50. doi: 10.1109/TSMCB.2009.2024166. Epub 2009 Jul 17.
7
Texture segmentation by genetic programming.基于遗传编程的纹理分割
Evol Comput. 2008 Winter;16(4):461-81. doi: 10.1162/evco.2008.16.4.461.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验