Suppr超能文献

溶菌酶的分子内交联。咪唑催化通过碳二亚胺反应在赖氨酸-13(ε-氨基)和亮氨酸-129(α-羧基)之间形成交联。

Intramolecular cross-linkage of lysozyme. Imidazole catalysis of the formation of the cross-link between lysine-13 (epsilon-amino) and leucine-129 (alpha-carboxyl) by carbodiimide reaction.

作者信息

Yamada H, Kuroki R, Hirata M, Imoto T

出版信息

Biochemistry. 1983 Sep 13;22(19):4551-6. doi: 10.1021/bi00288a031.

Abstract

The salt bridge between Lys-13 (epsilon-NH3+) and Leu-129 (alpha-COO-) in lysozyme was converted to an amide bond by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC) reaction in the presence of imidazole (0.3-1 M) at pH 5 and room temperature, followed by dialysis at pH 10. Absence of imidazole under a similar condition did not give this intramolecularly cross-linked lysozyme derivative (CL-lysozyme) but resulted in the formation of intermolecularly cross-linked lysozyme oligomers. From the mechanistic studies on the formation of CL-lysozyme, imidazole was suggested to play the following three roles. (1) Some carboxyl groups activated by EDC in lysozyme were converted to acylimidazole groups which protected them from the reaction with amino groups in other lysozyme molecules at pH 5. These could be hydrolyzed at pH 10 to regenerate free carboxyls. (2) High concentrations of imidazole (pH 5) increased the ionic strength of the solution which weakened the salt bridge in lysozyme and facilitated the activation of the alpha-carboxyl group by EDC. (3) The alpha-carboxyl group activated by EDC was converted to an acylimidazole group which could react with the epsilon-amino group of Lys-13 in the same molecule to form an amide bond. The last step may involve some conformational change of the backbone of lysozyme and be slower than the hydrolysis reaction of the alpha-carboxyl group activated by EDC itself. However, acylimidazole groups are stable against hydrolysis at pH 5. This may afford enough time to allow the epsilon-amino group of Lys-13 to attack the acylimidazole group of Leu-129.

摘要

在pH 5和室温条件下,溶菌酶中赖氨酸-13(ε-NH₃⁺)与亮氨酸-129(α-COO⁻)之间的盐桥通过1-乙基-3-[3-(二甲基氨基)丙基]碳二亚胺盐酸盐(EDC)反应,在咪唑(0.3 - 1 M)存在的情况下转化为酰胺键,随后在pH 10条件下进行透析。在类似条件下不存在咪唑时,不会产生这种分子内交联的溶菌酶衍生物(CL-溶菌酶),而是导致分子间交联的溶菌酶寡聚体的形成。从对CL-溶菌酶形成的机理研究来看,咪唑被认为发挥了以下三个作用。(1)溶菌酶中被EDC活化的一些羧基转化为酰基咪唑基团,这些基团在pH 5时可保护它们不与其他溶菌酶分子中的氨基发生反应。它们在pH 10时可水解再生游离羧基。(2)高浓度的咪唑(pH 5)增加了溶液的离子强度,削弱了溶菌酶中的盐桥,并促进了EDC对α-羧基的活化。(3)被EDC活化的α-羧基转化为酰基咪唑基团后,可与同一分子中赖氨酸-13的ε-氨基反应形成酰胺键。最后一步可能涉及溶菌酶主链的一些构象变化,并且比EDC本身活化的α-羧基的水解反应要慢。然而,酰基咪唑基团在pH 5时对水解是稳定的。这可能提供了足够的时间,使赖氨酸-13的ε-氨基能够攻击亮氨酸-129的酰基咪唑基团。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验