Suppr超能文献

6-hydroxydopamine does not reduce molecular oxygen directly, but requires a coreductant.

作者信息

Gee P, Davison A J

出版信息

Arch Biochem Biophys. 1984 May 15;231(1):164-8. doi: 10.1016/0003-9861(84)90373-4.

Abstract

The autoxidation of 6-hydroxydopamine (6HODA) was virtually blocked (k2 less than 10(-15) M-1 S-1 at pH 8.0, ionic strength 0.04) by the simultaneous presence of diethylenetriaminepentaacetic acid (DTPA), catalase, and superoxide dismutase (SOD). No quinone product or oxygen consumption was detectable after 12 min under these conditions. Thus, if 6HODA is to react with molecular oxygen at a measurable rate, some other redox species is required as a coreductant. The subsequent addition of formate or mannitol proved capable of overcoming the total inhibition induced by the mixture of catalase, SOD, and DTPA. The simplest interpretation of the data is that most of the autoxidation of 6HODA, as commonly observed, involves successive reduction of a series of metal-bound species of oxygen; the actual transfer of electrons occurring within a ternary reductant-metal-oxygen transition state.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验