Penning T M, Mukharji I, Barrows S, Talalay P
Biochem J. 1984 Sep 15;222(3):601-11. doi: 10.1042/bj2220601.
An NAD(P)-dependent 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) was purified to homogeneity from rat liver cytosol, where it is responsible for most if not all of the capacity for the oxidation of androsterone, 1-acenaphthenol and benzenedihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene). The dehydrogenase has many properties (substrate specificity, pI, Mr, amino acid composition) in common with the dihydrodiol dehydrogenase (EC 1.3.1.20) purified from the same source [Vogel, Bentley, Platt & Oesch (1980) J. Biol. Chem. 255, 9621-9625]. Since 3 alpha-hydroxysteroids are by far the most efficient substrates, the enzyme is more appropriately designated a 3 alpha-hydroxysteroid dehydrogenase. It also promotes the NAD(P)H-dependent reductions of quinones (e.g. 9,10-phenanthrenequinone, 1,4-benzoquinone), aromatic aldehydes (4-nitrobenzaldehyde) and aromatic ketones (4-nitroacetophenone). The dehydrogenase is not inhibited by dicoumarol, disulfiram, hexobarbital or pyrazole. The mechanism of the powerful inhibition of this enzyme by both non-steroidal and steroidal anti-inflammatory drugs [Penning & Talalay (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4504-4508] was examined with several substrates. Most non-steroidal anti-inflammatory drugs are competitive inhibitors (e.g. Ki for indomethacin, 0.20 microM for 9,10-phenanthrenequinone reduction at pH 6.0, and 0.835 microM for androsterone oxidation at pH 7.0), except for salicylates, which act non-competitively (e.g. Ki for aspirin, 650 microM for androsterone oxidation). The inhibitory potency of these agents falls sharply as the pH is increased from 6 to 9. Most anti-inflammatory steroids are likewise competitive inhibitors, except for the most potent (betamethasone and dexamethasone), which act non-competitively. The enzyme is inhibited competitively by arachidonic acid and various prostaglandins.
从大鼠肝脏胞液中纯化出一种烟酰胺腺嘌呤二核苷酸(磷酸)依赖性3α - 羟基类固醇脱氢酶(EC 1.1.1.50),达到了同质纯。在大鼠肝脏胞液中,该酶即便不是全部,也是大部分负责雄甾酮、苊醇和苯二氢二醇(反式 - 1,2 - 二羟基环己 - 3,5 - 二烯)氧化的能力。该脱氢酶具有许多与从同一来源纯化出的二氢二醇脱氢酶(EC 1.3.1.20)相同的特性(底物特异性、等电点、相对分子质量、氨基酸组成)[沃格尔、本特利、普拉特和厄施(1980年)《生物化学杂志》255卷,9621 - 9625页]。由于3α - 羟基类固醇是迄今为止最有效的底物,该酶更适宜被命名为3α - 羟基类固醇脱氢酶。它还能促进烟酰胺腺嘌呤二核苷酸(磷酸)氢依赖性的醌类(如9,10 - 菲醌、1,4 - 苯醌)、芳香醛(4 - 硝基苯甲醛)和芳香酮(4 - 硝基苯乙酮)的还原反应。该脱氢酶不受双香豆素、双硫仑、己巴比妥或吡唑的抑制。用几种底物研究了非甾体和甾体抗炎药对这种酶的强效抑制机制[彭宁和塔拉莱(1983年)《美国国家科学院院刊》80卷,4504 - 4508页]。大多数非甾体抗炎药是竞争性抑制剂(例如,吲哚美辛的抑制常数Ki,在pH 6.0时对9,10 - 菲醌还原反应为0.20微摩尔,在pH 7.0时对雄甾酮氧化反应为0.835微摩尔),但水杨酸酯类除外,它们起非竞争性抑制作用(例如,阿司匹林的抑制常数Ki,对雄甾酮氧化反应为650微摩尔)。随着pH从6升高到9,这些药物的抑制效力急剧下降。大多数抗炎甾体同样是竞争性抑制剂,但最有效的(倍他米松和地塞米松)除外,它们起非竞争性抑制作用。该酶受到花生四烯酸和各种前列腺素的竞争性抑制。