Suppr超能文献

Local circuit interactions in synchronization of cortical neurones.

作者信息

Wong R K, Miles R, Traub R D

出版信息

J Exp Biol. 1984 Sep;112:169-78. doi: 10.1242/jeb.112.1.169.

Abstract

Under certain circumstances large numbers of neurones in the mammalian central nervous system (CNS) can discharge simultaneously. An example of such activity is recorded from a hippocampal slice in the presence of agents which block synaptic inhibition. This synchronized discharge occurs spontaneously in a rhythmic fashion or may be triggered by stimulation of any afferent pathway. Its generation appears to involve local circuit interactions. The favourable conditions offered by an in vitro preparation have allowed the cellular events during this activity to be examined in some detail. Three factors appear to be critically involved in the synchronization process. Firstly, the intrinsic ability of neurones to generate bursts, secondly, the existence of powerful recurrent excitatory connections, and thirdly the absence of inhibition which normally prevents the spread of bursting activity through the recurrent connections. Computer simulations show that in a sparsely connected network of bursting neurones activity initiated in a few cells may spread through recurrent connections until eventually the whole population discharges simultaneously. Rhythmic discharges similar to those described here also underly various CNS functions including centrally-originating motor patterns. It remains to be determined whether neuronal properties and connectivity found to be important in this hippocampal rhythm may also play a role in the generation of other rhythmic activities in the mammalian CNS.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验