Suppr超能文献

寻求初级保健的原因分类:新系统的试点研究

Classification of reasons why persons seek primary care: pilot study of a new system.

作者信息

Lamberts H, Meads S, Wood M

出版信息

Public Health Rep. 1984 Nov-Dec;99(6):597-605.

Abstract

In 1978, the World Health Organization formed a group to begin work on the Reason for Encounter Classification (RFEC), which is designed to classify the reasons why patients seek care at the primary level. The relatively simple classification is based on two axes--chapters and components--and uses a three-character alpha-numeric code. Chapters, which are named by body systems or more general terms, are the reasons that health care was sought. Five of the seven components, or subdivisions of chapters, contain rubrics identified by the same two-digit numerical code. A pilot study with a training exercise was carried out in The Netherlands by nine family physicians to confirm the feasibility of using the new classification system in primary care settings. Training consisted of viewing videotapes of encounters and an exercise of coding 76 vignettes by the RFEC. Within 2 months, the physicians in the subsequent pilot study had collected and coded 7,503 reasons for encounters. Results of the pilot study confirm that the RFEC is feasible, easy to use in practice, and different from disease-oriented classifications in its system of classifying the reasons for encounter. The pilot study results have been used to modify the RFEC in preparation for a field trial in ambulatory care settings worldwide.

摘要

1978年,世界卫生组织成立了一个小组,着手开展就诊原因分类(RFEC)的研究工作,该分类旨在对患者在基层医疗机构寻求治疗的原因进行分类。这种相对简单的分类基于两个轴——章节和组成部分——并使用三位字母数字代码。章节由身体系统或更通用的术语命名,是寻求医疗保健的原因。七个组成部分(即章节的细分)中有五个包含由相同的两位数数字代码标识的条目。九位家庭医生在荷兰进行了一项带有培训练习的试点研究,以确认在基层医疗环境中使用新分类系统的可行性。培训内容包括观看就诊录像带以及按照RFEC对76个病例进行编码练习。在两个月内,后续试点研究中的医生收集并编码了7503条就诊原因。试点研究结果证实,RFEC是可行的,在实践中易于使用,并且在就诊原因分类系统方面与以疾病为导向的分类不同。试点研究结果已被用于修改RFEC,为在全球门诊护理环境中进行实地试验做准备。

相似文献

9
International classification of primary care.
Scand J Prim Health Care. 1986 Feb;4(1):43-50. doi: 10.3109/02813438609013970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验