Chock S P
J Biol Chem. 1981 Nov 10;256(21):10954-60.
The kinetics of the fluorescence enhancement and the transient release of H+ caused by the binding of ADP to the active center of myosin has been compared to that caused by myosin-ATP interaction. The results show that both the time courses of the fluorescence enhancement and the transient H+ release caused by ADP binding, like that caused by ATP hydrolysis in the initial burst, are monophasic exponential processes. The fact that the rates of these two processes are also equal suggests that they both reflect the same mechanistic event in the mechanism of ADP binding. The kinetics of ADP binding as measured by the fluorescence enhancement and the H+ release is different from that of ATP. This is in agreement with our previous finding that the enhancement of fluorescence and the transient release of H+, in the case of ATP, reflect the initial burst of ATP hydrolysis, whereas in the case of ADP, they represent a conformational change in the myosin-ADP complex. The magnitude of the H+ transient caused by the initial burst is approximately equal to that caused by ADP binding. The amplitude of the fluorescence enhancement caused by ADP binding is equal to one-third of that caused by the initial burst.