van Breugel P J, Geurts P H, Daemen F J, Bonting S L
Biochim Biophys Acta. 1978 May 4;509(1):136-47. doi: 10.1016/0005-2736(78)90014-7.
Treatment of bovine rod outer segments with phospholipase C leads to largely lipid-depleted membranous structures. Under these conditions rhodopsin remains spectrally intact, but its thermal stability and regeneration capacity are decreased, whereas upon illumination the metarhodopsin I to II transition is blocked. These observations can be explained on the basis of the previously demonstrated lateral aggregation of rhodopsin molecules which, on the one hand leads to a (partial) shielding of these molecules and, on the other hand, might impose constraints on the flexibility of the molecule to undergo light-induced conformational changes. Upon reconstitution of these lipid-depleted preparations with amphipathic lipids by means of a detergent dialysis procedure, the aggregates are apparently rearranged to lipid bilayer structures with complete recovery of the original rhodopsin properties. Under our conditions the nature of the polar head groups and the fatty acids is not critical in this respect. Simple addition of amphipathic lipids, without the use of detergent, restores the rhodopsin properties only in the case of rod outer segment lipids and of didecanoylphosphatidylcholine, and even then only occasionally. These results are discussed in the light of the strong analogy in properties between phospholipase C-treated rod outer segment membranes and lipid- and detergent-free rhodopsin obtained by affinity chromatography. It is concluded that rhodopsin must be in a freely dispersed state in order to function properly. Apparently, a non-specific lipid bilayer fulfills this condition for the regeneration capacity, whereas normal photolytic behaviour requires, in addition, a minimal membrane fluidity according to the observations of other investigators. Presumably, the uniquely high phospholipid unsaturation of rod outer segment membranes is important for another, as yet unassessed, function of rhodopsin or the photoreceptor membrane.