Weibel E R, Paumgartner D
J Cell Biol. 1978 May;77(2):584-97. doi: 10.1083/jcb.77.2.584.
The basic stereological formulas for estimating volume (Vv) and surface (Sv) densities are strictly valid only for true infinitely thin sections; the use of "ultrathin" sections of finite thickness T introduces systematic errors, mostly in the sense of overestimation of the parameters. These errors depend on the size and shape of the structural elements and on T. Correction factors for this effect of T are derived by considering model structures that simulate the shape and arrangement of subcellular organelles: (a) spherical vesicles, (b) disks as models for rough endoplasmic reticulum (RER) cisternae, (c) cylindrical tublules as models for smooth endoplasmic reticulum (SER) tubules, microvilli, etc. For vesicles, a model of discrete convex spherical particles is assumed; the correction factors consider loss of caps due to grazing sections and size distribution of the vesicles. The disk and tubule models are used in connection with the new integral geometric formulas of R.E. Miles which consider random aggregates of "inter-penetrating" particles so that the resultant structure is non-convex and thus approximates in nature the networks characteristic of endoplasmic reticulum (ER). Some practical examples relative to liver cells show that the errors due to section thickness may be of the order of 20-40% or more. Computation formulas as well as graphs are given for the determination of the correction factors for Vv and Sv.
用于估计体积密度(Vv)和表面积密度(Sv)的基本体视学公式仅对真正无限薄的切片严格有效;使用有限厚度T的“超薄”切片会引入系统误差,大多表现为对参数的高估。这些误差取决于结构元件的大小和形状以及T。通过考虑模拟亚细胞器形状和排列的模型结构来推导T这种效应的校正因子:(a)球形囊泡,(b)作为粗面内质网(RER)池模型的圆盘,(c)作为滑面内质网(SER)小管、微绒毛等模型的圆柱形小管。对于囊泡,假定为离散凸球形颗粒模型;校正因子考虑了由于擦过切片导致的帽丢失以及囊泡的大小分布。圆盘和小管模型与R.E.迈尔斯的新积分几何公式结合使用,该公式考虑了“相互贯穿”颗粒的随机聚集体,使得所得结构是非凸的,从而在本质上近似内质网(ER)的网络特征。一些与肝细胞相关的实际例子表明,由于切片厚度导致的误差可能在20% - 40%或更高的量级。给出了用于确定Vv和Sv校正因子的计算公式以及图表。