Suppr超能文献

前列腺素对红细胞生成的激活作用。

Prostanoid activation of erythropoiesis.

作者信息

Fisher J W, Nelson P K, Belegu M, Hagiwara M, Beckman B

出版信息

Haematologia (Budap). 1984;17(2):137-49.

PMID:6543529
Abstract

A model is proposed for the role of the kidney in the control of erythropoietin production in which the initial trigger is an oxygen deficit created by anemia, hypobaria or ischemia. It is postulated that hypoxia creates a decrease in the oxygen level in a critical renal sensor cell, perhaps in the glomerular tuft, which eventually leads to the production of prostacyclin. It is possible that the endothelial cell in the glomerular tuft responds to this oxygen deficit to produce prostacyclin to trigger erythropoietin production. Recent studies on prostaglandin synthesis by human isolated glomeruli indicate that the most abundant prostanoid synthesized by the glomerular tuft cells was 6-keto PGF1 alpha, a metabolite of prostacyclin (PGI2). PGI2 has also been reported to be produced by isolated vascular endothelial cells. The mechanism by which hypoxia may initiate the synthesis and/or release of prostaglandins and prostacyclin in the renal cell has not been elucidated. Significant to erythropoietin production is the production by hypoxia of prostacyclin which eventually leads to the production of the metabolite 6-keto PGE1. We further propose that 6-keto PGE1 is the prostanoid which activates a specific cell membrane adenylate cyclase, causing the conversion of ATP to cyclic AMP. This is a very critical step in that there must be a sufficient amount of ATP remaining to generate cyclic AMP in order for erythropoietin biosynthesis to occur with the reduced level of ATP which may have caused a perturbation of the cell membrane. The elevated cyclic AMP leads to the activation of protein kinases which are essential in phosphorylating the lysosomal hydrolases released by hypoxia into the cytosol of the cell and may be the precursors of erythropoietin. Neutral proteases and lysosomal hydrolases, documented triggers of erythropoietin production, have been demonstrated to be elevated in the kidney after hypoxia. The mechanism of labilization and release of these enzymes from the renal lysosomes has been postulated to be related to increases in cyclic GMP levels in a renal cell. Hypoxia causes the release of renal lysosomal hydrolases which then undergo phosphorylation through activation by protein kinases following prostanoid stimulation of renal adenylate cyclase to generate cyclic AMP, resulting in increased biosynthesis of erythropoietin.

摘要

提出了一种关于肾脏在促红细胞生成素产生调控中作用的模型,其中初始触发因素是由贫血、低气压或局部缺血造成的氧缺乏。据推测,缺氧会导致关键肾传感细胞(可能是肾小球丛)中的氧水平降低,最终导致前列环素的产生。肾小球丛中的内皮细胞有可能对这种氧缺乏做出反应,产生前列环素以触发促红细胞生成素的产生。最近对人分离肾小球前列腺素合成的研究表明,肾小球丛细胞合成的最丰富的前列腺素是6 - 酮 - PGF1α,它是前列环素(PGI2)的一种代谢产物。据报道,分离的血管内皮细胞也能产生PGI2。缺氧可能启动肾细胞中前列腺素和前列环素合成及/或释放的机制尚未阐明。对促红细胞生成素产生具有重要意义的是缺氧产生前列环素,最终导致代谢产物6 - 酮 - PGE1的产生。我们进一步提出,6 - 酮 - PGE1是激活特定细胞膜腺苷酸环化酶的前列腺素,导致ATP转化为环磷酸腺苷(cAMP)。这是非常关键的一步,因为必须有足够量的ATP剩余以生成cAMP,以便在ATP水平降低(这可能导致细胞膜紊乱)的情况下发生促红细胞生成素的生物合成。升高的cAMP会导致蛋白激酶的激活,蛋白激酶对于将缺氧释放到细胞胞质溶胶中的溶酶体水解酶磷酸化至关重要,而这些溶酶体水解酶可能是促红细胞生成素的前体。中性蛋白酶和溶酶体水解酶是已被证明的促红细胞生成素产生的触发因素,在缺氧后的肾脏中已被证明其水平升高。这些酶从肾溶酶体中不稳定化和释放的机制据推测与肾细胞中环鸟苷酸(cGMP)水平的升高有关。缺氧导致肾溶酶体水解酶的释放,然后在前列腺素刺激肾腺苷酸环化酶产生cAMP后,通过蛋白激酶的激活使其发生磷酸化,从而导致促红细胞生成素的生物合成增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验