Renaud A, Lestienne P, Hughes D L, Bieth J G, Dimicoli J L
J Biol Chem. 1983 Jul 10;258(13):8312-6.
Trifluoroacetyl dipeptide anilides have been synthesized and used to map the S' subsites of porcine pancreatic elastase and human leucocyte elastase. A confident mapping of these subsites, at least for the porcine enzyme, was possible since the x-ray crystallographic study of its complex with CF3CO-Lys-Ala-NH-Ph-p-CF3 at a resolution of 2.5 A (Hughes, D. L., Sieker, L. C., Bieth, J., and Dimicoli, J. L. (1982) J. Mol. Biol. 162, 645-658) shows the CF3CO group at the S1 subsite and the dipeptide anilide bound at sites close to the S'1-S'3 subsites. Furthermore the effect of substitution was easy to investigate since these ligands are reversible competitive inhibitors of elastases, whose mode of binding to the porcine enzyme has been shown by nuclear magnetic resonance spectroscopy (Dimicoli, J. L., Renaud, A., and Bieth, J. (1980) Eur. J. Biochem. 107, 423-432) to be essentially unique and common to all CF3CO peptide anilides. The total number of S' subsites was found to be three for both enzymes. The individual subsites have the following specificities: subsite S'1, in porcine pancreatic elastase this subsite prefers Lys to Ala or Glu. In human leucocyte elastase this subsite is less specific; subsite S'2, in porcine pancreatic elastase, this subsite has a marked specificity for Ala. It accommodates bulkier residues with some difficulty. In human leucocyte elastase there is a remarkable specificity for Leu at this subsite; subsite S'3, in porcine pancreatic elastase, this subsite has a high aromatic specificity. In human leucocyte elastase there is no such affinity in S'3 but favorable local interaction exists. These specificities are examined on the basis of the coordinates of the CF3CO-Lys-Ala-NH-Ph-p-CF3 . porcine pancreatic elastase complex. Furthermore the different specificities of the S'2 subsite found in our own work and proposed by Atlas (Atlas, D. (1975) J. Mol. Biol. 93, 39-53) are briefly discussed.
三氟乙酰二肽苯胺已被合成并用于绘制猪胰弹性蛋白酶和人白细胞弹性蛋白酶的S'亚位点图谱。至少对于猪胰弹性蛋白酶来说,对这些亚位点进行可靠的图谱绘制是可能的,因为其与CF3CO-Lys-Ala-NH-Ph-p-CF3复合物的X射线晶体学研究(分辨率为2.5埃)(休斯,D.L.,西克,L.C.,比埃特,J.,迪米科利,J.L.(1982年)《分子生物学杂志》162卷,645 - 658页)显示CF3CO基团位于S1亚位点,二肽苯胺结合在靠近S'1 - S'3亚位点的位置。此外,由于这些配体是弹性蛋白酶的可逆竞争性抑制剂,因此取代效应易于研究,核磁共振光谱已表明它们与猪胰弹性蛋白酶的结合模式(迪米科利,J.L.,勒诺,A.,比埃特,J.(1980年)《欧洲生物化学杂志》107卷,423 - 432页)对于所有CF3CO肽苯胺来说基本上是独特且相同的。结果发现这两种酶的S'亚位点总数均为三个。各个亚位点具有以下特异性:亚位点S'1,在猪胰弹性蛋白酶中,该亚位点优先选择赖氨酸而非丙氨酸或谷氨酸。在人白细胞弹性蛋白酶中,该亚位点的特异性较低;亚位点S'2,在猪胰弹性蛋白酶中,该亚位点对丙氨酸具有显著特异性。容纳体积较大的残基存在一定困难。在人白细胞弹性蛋白酶中,该亚位点对亮氨酸具有显著特异性;亚位点S'3,在猪胰弹性蛋白酶中,该亚位点具有较高的芳香族特异性。在人白细胞弹性蛋白酶的S'3中不存在这种亲和力,但存在有利的局部相互作用。基于CF3CO-Lys-Ala-NH-Ph-p-CF3·猪胰弹性蛋白酶复合物的坐标对这些特异性进行了研究。此外,还简要讨论了我们自己的工作中发现的以及阿特拉斯(阿特拉斯,D.(1975年)《分子生物学杂志》93卷,39 - 53页)提出的S'2亚位点的不同特异性。