Suppr超能文献

内在膜蛋白与电场之间的相互作用。一种研究神经兴奋性的方法。

Interactions between intrinsic membrane protein and electric field. An approach to studying nerve excitability.

作者信息

Stevens C F

出版信息

Biophys J. 1978 May;22(2):295-306. doi: 10.1016/S0006-3495(78)85490-3.

Abstract

We have approached the problem of nerve excitability through three questions: (a) What is the diagram for a channel? That is, what conformational states can the protein assume, and what transitions between these conformations are permitted? (b) What is the channel conductance associated with each conformation the channel can assume? (c) How do the rates for conformational transition depend upon membrane potential? These three questions arise from a standard statistical mechanical treatment of a nerve membrane containing several classes of identical, independent channels. Gating of channels, in this view, is associated with conformational changes of the channel protein, and it is assumed these conformations are distinct. The precise formulation of these questions is presented in terms of the theoretical treatment, and the approaches we have taken to answer the questions are indicated. Our present results indicate: Transition rates should depend exponentially on membrane potential over a limited voltage range, but probably will show a more complex dependence for extremes of the range; channels probably can take on only two conductances, open and shut, but more complicated situations are not entirely excluded; the diagram for a channel cannot be determined from standard voltage clamp data alone, but by studying gating currents and conductance fluctuations, it should be possible to select between alternative plausible physical mechanisms.

摘要

我们通过三个问题来探讨神经兴奋性问题

(a)通道的示意图是怎样的?也就是说,蛋白质能呈现哪些构象状态,以及这些构象之间允许哪些转变?(b)通道能呈现的每种构象所对应的通道电导是多少?(c)构象转变的速率如何依赖于膜电位?这三个问题源自对包含几类相同、独立通道的神经膜进行的标准统计力学处理。从这个角度来看,通道的门控与通道蛋白的构象变化相关,并且假定这些构象是不同的。这些问题的精确表述将依据理论处理给出,同时也会指出我们为回答这些问题所采用的方法。我们目前的结果表明:在有限的电压范围内,转变速率可能会指数性地依赖于膜电位,但在该范围的极值情况下可能会呈现更复杂的依赖关系;通道可能仅具有两种电导状态,即开放和关闭,但也不能完全排除更复杂的情况;仅从标准电压钳数据无法确定通道的示意图,但通过研究门控电流和电导波动,应该能够在几种看似合理的物理机制之间做出选择。

相似文献

3
Ionic channels with conformational substates.具有构象亚态的离子通道。
Biophys J. 1985 May;47(5):581-90. doi: 10.1016/S0006-3495(85)83954-0.

引用本文的文献

4
Rapid Characterization of hERG Channel Kinetics II: Temperature Dependence.快速 hERG 通道动力学特征 II:温度依赖性。
Biophys J. 2019 Dec 17;117(12):2455-2470. doi: 10.1016/j.bpj.2019.07.030. Epub 2019 Jul 25.
6
Equilibrium fluctuation relations for voltage coupling in membrane proteins.膜蛋白中电压耦合的平衡涨落关系。
Biochim Biophys Acta. 2015 Nov;1848(11 Pt A):2985-97. doi: 10.1016/j.bbamem.2015.08.008. Epub 2015 Aug 17.
9
Quantification of gastrointestinal sodium channelopathy.胃肠道钠离子通道病的定量分析。
J Theor Biol. 2012 Jan 21;293:41-8. doi: 10.1016/j.jtbi.2011.09.014. Epub 2011 Sep 21.

本文引用的文献

2
Relaxation spectra of ribonuclease. II. Isomerization of ribonuclease at neutral pH values.
J Am Chem Soc. 1965 Nov 5;87(21):4669-73. doi: 10.1021/ja00949a002.
3
Dielectric properties of hemoglobin and myoglobin. II. Dipole moment of sperm whale myoglobin.
Biopolymers. 1969;8(6):757-65. doi: 10.1002/bip.1969.360080606.
4
A quantitative description of end-plate currents.终板电流的定量描述。
J Physiol. 1972 May;223(1):173-97. doi: 10.1113/jphysiol.1972.sp009840.
7
Ionic pores, gates, and gating currents.离子孔道、门控通道和门控电流。
Q Rev Biophys. 1974 May;7(2):179-210. doi: 10.1017/s0033583500001402.
8
How many conductance states do potassium channels have?钾通道有多少种电导状态?
Biophys J. 1975 Aug;15(8):843-6. doi: 10.1016/S0006-3495(75)85858-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验