Eyer P
Arch Toxicol Suppl. 1983;6:3-12. doi: 10.1007/978-3-642-69083-9_1.
During biotransformation of arylamines, activated phase I metabolites, like aminophenols and hydroxylamines, occasionally escape the liver and exert allergic, toxic or carcinogenic effects in sensitive target organs. The first organ in contact with these proximate toxic compounds is the blood where oxyhemoglobin activates proximate to ultimate toxic derivatives. Thereby hydroxylamines and oxyhemoglobin are co-oxidized to nitrosoarenes and ferrihemoglobin. Because of an enzymic cycle, severe methemoglobinemia can occur even with small, catalytic amounts of hydroxylamines. Reactive oxygen intermediates, if not eliminated enzymically, may be responsible for hemolysis, Heinz body formation, and green pigments. In addition, nitrosoarenes bind covalently to hemoglobin and membranes and deplete glutathione by formation of glutathione-sulfinamides. Aminophenols, on the other hand, have to be activated first by oxyhemoglobin to phenoxyl radicals and quinonimines, which are reduced back with simultaneous ferrihemoglobin formation. Hence, aminophenols catalytically transfer electrons from iron to oxygen. This catalytic cycle is terminated by side reactions: p-quinonimines form adducts with glutathione and hemoglobin. Thereby the physiological functions of hemoglobin can be greatly altered as shown for 4-dimethylaminophenol. o-Quinonimines either condense to the respective phenoxazones, or if condensation is hindered, they form adducts, mainly with thiols. The different pathways for o-aminophenols are concentration-dependent, with adduct formation being favoured at low concentrations. Thus, methemoglobin formation poorly correlates with the implications of reactive electrophilic intermediates.
在芳胺的生物转化过程中,像氨基酚和羟胺这样的活性I相代谢产物偶尔会逃离肝脏,并在敏感靶器官中产生过敏、毒性或致癌作用。与这些近端有毒化合物接触的第一个器官是血液,其中氧合血红蛋白将近端有毒衍生物激活为最终有毒衍生物。因此,羟胺和氧合血红蛋白被共同氧化为亚硝基芳烃和高铁血红蛋白。由于酶循环的存在,即使是少量的催化量的羟胺也可能导致严重的高铁血红蛋白血症。如果不通过酶促作用消除,活性氧中间体可能导致溶血、海因茨小体形成和绿色色素。此外,亚硝基芳烃与血红蛋白和细胞膜共价结合,并通过形成谷胱甘肽-亚磺酰胺消耗谷胱甘肽。另一方面,氨基酚必须首先被氧合血红蛋白激活为苯氧自由基和醌亚胺,它们在形成高铁血红蛋白的同时被还原回去。因此,氨基酚催化地将电子从铁转移到氧。这个催化循环通过副反应终止:对醌亚胺与谷胱甘肽和血红蛋白形成加合物。由此,血红蛋白的生理功能可能会像4-二甲基氨基酚那样发生很大改变。邻醌亚胺要么缩合为相应的吩恶嗪,要么如果缩合受阻,它们主要与硫醇形成加合物。邻氨基酚的不同途径取决于浓度,在低浓度下加合物形成更受青睐。因此,高铁血红蛋白的形成与活性亲电中间体的影响相关性较差。